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ABSTRACT

Recommendation, information retrieval, and other infor-
mation access systems pose unique challenges for investi-
gating and applying the fairness and non-discrimination
concepts that have been developed for studying other ma-
chine learning systems. While fair information access shares
many commonalities with fair classification, there are impor-
tant differences: the multistakeholder nature of information
access applications, the rank-based problem setting, the
centrality of personalization in many cases, and the role
of user response all complicate the problem of identifying
precisely what types and operationalizations of fairness may
be relevant.

In this monograph, we present a taxonomy of the various
dimensions of fair information access and survey the liter-
ature to date on this new and rapidly-growing topic. We
preface this with brief introductions to information access
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and algorithmic fairness to facilitate use of this work by
scholars with experience in one (or neither) of these fields
who wish to study their intersection. We conclude with sev-
eral open problems in fair information access, along with
some suggestions for how to approach research in this space.
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1
Introduction

As long as humans have recorded information in durable form, they have
needed tools to access it: to locate the information they seek, review it,
and consume it. Digitally, tools to facilitate information access take a
variety of forms, including information retrieval and recommendation
systems; these tools have been powered by technologies built on various
paradigms, from heuristic metrics and expert systems to deep neural net-
works with sophisticated rank-based objective functions. Fundamentally,
these technologies take a user’s information need (an explicit and/or
implicit need for information for some purpose (Kuhlthau, 1993), such
as filling in knowledge or selecting a product) and locate documents or
items that are relevant (that is, will meet the user’s need).

Throughout the history of these technologies — which we treat
under the integrated banner of information access systems — both
research and development have been concerned with a range of effects
beyond a system’s ability to locate individual items that are relevant
to a user’s information need. Research has examined the diversity and
novelty of results (Santos et al., 2015; Hurley and Zhang, 2011) and
the coverage of the system, among other concerns. In recent years, this
concern has extended to the fairness of an information access system: are

5



6 Introduction

the benefits and resources it provides fairly allocated between different
people or organizations it affects? Does it introduce or reproduce harms,
particularly harms distributed in an unfair or unjust way? This challenge
is connected to the broader set of research on fairness in sociotechnical
systems generally and AI systems more particularly (Mitchell et al.,
2020; Barocas et al., 2019), but information access systems have their
own set of particular challenges and possibilities.

Fairness is not an entirely new concern for information access; various
fairness problems can be connected to topics with long precedent in the
information retrieval and recommender systems literature. In the context
of information retrieval, Friedman and Nissenbaum (1996) and Introna
and Nissenbaum (2000) recognized the potential for search engines to
embed social, political, and moral values in their ranking functions. In
order to assess the impact of such values, Mowshowitz and Kawaguchi
(2002) developed a metric to measure a search engine’s deviation from
an ideal exposure of content. Although conversations often focus on
bias in algorithmic ranking, Vaughan and Zhang (2007) and Vaughan
and Thelwall (2004) note that bias can be introduced because of biased
crawling and indexing; in particular, they describe, writing in the 2000s,
how Chinese webpages were under-indexed by search engines. These
observations led to discussion amongst legal scholar about regulation of
search engines (Goldman, 2005; Pasquale, 2006). Azzopardi and Vinay
(2008) proposed the notion document retrievability and investigated
the skew in this distribution for different retrieval systems. Work on
popularity bias (Celma and Cano, 2008; Zhao et al., 2013; Cañamares
and Castells, 2018) and rich-get-richer effects (Cho et al., 2005), along
with attempts to ensure quality and equity in long-tail recommendations
(Ferraro, 2019), can be viewed as a type of fairness problem: the system
should not inordinately favor popular, well-known, and possibly well-
funded content creators. In a group recommendation, one common
objective is to ensure that the various members of a group are treated
fairly (Kaya et al., 2020).

The work on fair information access that we present here goes
beyond these problems to examine how various forms of unfairness —
particularly those that arise from social biases (Olteanu et al., 2019)
— can make their way in to the data, algorithms, and outputs of
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information access systems. These biases can affect many different
stakeholders of an information access system; Burke (2017) distinguishes
between provider- and consumer-side fairness, and other individuals
or organizations affected by an information access system may have
further fairness concerns.

In this monograph, we provide an introduction to fairness in infor-
mation access, aiming to give students, researchers, and practitioners
a starting point for understanding the problem space, the research to
date, and a foundation for their further study. Fairness in information
access draws heavily from the fair machine learning literature, which
we summarize in chapter 3; researchers and practitioners looking to
study or improve the fairness of information access will do well to pay
attention to a broad set of research results. For reasons of scope, we
are primarily concerned here with the fairness of the information access
transaction itself: providing results in response to a request encoding an
information need. Fairness concerns can also arise in other aspects of the
system, such as the representation and presentation of documents them-
selves, or in support facilities such as query suggestions (Noble, 2018).
We provide brief pointers on these topics, but a detailed treatment is
left for future synthesis, noting that they have not yet received as much
attention in the research literature. We are also specifically concerned
with fairness-related harms, and not the broader set of harms that may
arise in information access such as the amplification of disinformation.

Throughout this work, we use the term system to describe an
algorithmic system that performs some task: retrieving information,
recommending items, classifying or scoring people based on their data.
These systems are embedded in social contexts, operating on human-
provided inputs and producing results acted upon by humans. The
technical system forms one part of a broader socio-technical system.

1.1 Abstracting Information Access

Our choice to title this article “Fairness in Information Access” is
quite deliberate. While there is significant technical and social overlap
between information retrieval, recommender systems, and related fields,
they are distinct communities with differences in terminology, problem
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definitions, and evaluation practices. However, there are fundamental
commonalities, and they present many of the same problems that
complicate notions of fairness, including ranked outputs, personalized
relevance, repeated decision-making, and multistakeholder structure.
We therefore refer to them together as information access systems —
algorithmic systems that mediate the interaction between a repository
of documents or items and a user’s information need.

This information access umbrella includes information retrieval,
recommender systems, information filtering, and some applications of
natural language processing. In chapter 2, we present a fuller treatment
of this integration and reviews the fundamentals of information access,
both to introduce the concepts to readers who come to this paper from
a general fairness background and to lay out consistent terminology
for our readers from information retrieval or recommender systems
backgrounds.

1.2 A Brief History of Fairness

In the pursuit of fairness in algorithmic systems and the society more
generally, the authority of Aristotle’s citation of Plato “treat like cases
alike” is a key touchstone: a normative requirement that those who
are equal before the law should receive equal treatment (Gosepath,
2011). In more recent scholarship, the study of distributive welfare
extends these concepts considerably, recognizing four distinct concepts of
fairness: “exogenous rights, compensation, reward, and fitness.” (Moulin,
2004). Exogenous rights, as the term suggests, relate to external claims
that a system must satisfy: equal shares in property as defined by
contract, for example, or equality of political rights in democratic
societies. Compensation recognizes that fairness may require extra
consideration for parties where costs are unequal — affirmative action
in hiring and college admissions are well-known examples. Reward
justifies inequality on the basis of differing contributions: for example,
increased bonuses to employees with greater contribution to the bottom
line. Finally, we have fitness, the most nebulous category, and the one
that many information access systems inhabit. The fitness principle
holds that goods be distributed to those most fit to use, appreciate, or
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derive benefit from them. It is an efficiency principle, where the fairest
use is the one that allocates goods where the distribution achieves
the maximum utility. Fitness has a natural application to information
access, as we seek to locate documents and make them visible based on
their utility to the user’s information need.

U.S. legal theory has developed a rich tradition of anti-discrimination
law, aimed at ensuring that people are not denied certain benefits (hous-
ing, work, education, financial services, etc.) on the basis of protected
characteristics (race, color, religion, gender, disability, age, and in many
jurisdictions, sexual orientation). It has given rise to several impor-
tant concepts, such as the disparate impact standard (the idea that
an allegedly discriminatory practice can be legally challenged on the
grounds that it has disproportionate adverse impact on a protected
group, without needing to show intent to discriminate1). Crenshaw
(1989) points out some of the limitations of this legal framework; in
particular, it has often focused on discrimination on the basis of indi-
vidual protected characteristics, and people who have suffered harm as
a result of combinations of protected characteristics (e.g. Black women
being denied promotions given to both Black men and White women)
have difficulty proving their case and obtaining relief. This theory of
particular harms deriving from combinations of characteristics is called
intersectionality.

Questions of fairness and discrimination have been the subject of
significant discussion in many other communities as well. Educational
testing, for example, has several decades of research on the fairness
of various testing and assessment instruments; this history is sum-
marized for computer scientists by Hutchinson and Mitchell (2019).
Friedman and Nissenbaum (1996) provide one of the earlier examples of
addressing questions of bias in computer science, pointing out how even
seemingly-innocuous technical decisions may result in biased effects
when a computing system is used in its social context. The last ten years
have seen significant new activity on fairness in machine learning that

1Disparate impact is not sufficient basis to win a discrimination lawsuit; rather,
it is the first step in a multi-stage burden-shifting framework used to decide discrimi-
nation cases under the standard. Barocas and Selbst (2016) provide an overview of
the process.



10 Introduction

forms the primary stream of algorithmic fairness research; in chapter 3
we provide an introduction to this literature.

1.3 Fairness and Bias

There are many overlapping terms used to discuss issues of fairness, bias,
and discrimination. While we give a fuller treatment of the vocabulary
in chapter 3, we will here introduce how we use these terms in this
monograph. Work we cite may use them differently.

When we refer to fairness, we are talking about the ways a system
treats people, or groups of people, in a way that is considered “unfair” by
some moral, legal, or ethical standard. This is typically through effects or
impacts that are not experienced in an equitable way, but can sometimes
arise through the system’s internal operation or representations. This
definition is similar to how Friedman and Nissenbaum (1996) use the
term “bias”. There is not one particular definition of what constitutes
fairness, as Selbst et al. (2019) and many others have noted; for the
purpose of terminology, the important point is that we use the term to
refer to normative ideas of what it means to treat people “fairly”, no
matter their source.

When we talk about bias, we are using the term in something
closer to its statistical sense: we mean properties of estimators, models,
measurements, and data that systematically deviate from their intended
ideal target. As detailed in section 3.1, we share an expansive view of bias
with Mitchell et al. (2020, §2.2.1), noting that these biases can be the
kinds of statistical biases familiar to science (systematic discrepancies
between data or outputs and the underlying observable world), but
they can also be societal biases in the form of systematic discrepancies
between the observable world and the arguable ideal world that would
arise if society eliminated all forms of illegitimate discrimination.

The key distinction in our work is that we use the term “bias” to
refer to a fact of the system without making any inherently normative
judgment, and “fairness” to discuss the normative aspects of the system
and its effects. Some biases are themselves fairness problems; some
biases cause fairness problems; some have no effect with regards to
the concerns of fairness; and some may be intentionally introduced to
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address a fairness problem, often by correcting for another bias. Most
fairness problems arise from biases somewhere in the system, its data, or
its evaluation, but we find it useful to distinguish between the technical
fact and the moral, ethical, or legal concern.

1.4 Fairness and Other Responsibility Concerns

Fairness is commonly grouped together with other concerns under the
banner of responsibility in computing systems. These concerns include:

Accountability Research on accountability examines the legal, social,
and technical mechanisms by which computing systems and their
operators, developers, and providers may be held accountable,
usually for the human effects of their systems. This can connect
directly to fairness when considering how to hold organizations
accountable for ensuring their systems uphold societal goals to
be fair. Such accountability can be through formal structures,
such as applying anti-discrimination law to computing systems,
or through informal structures such as applying pressure through
publicizing the results of third-party audits.

Transparency Transparency (and its close cousin explainability) seeks
to make the operation and results of algorithmic systems scrutable
to users, developers, auditors, and other stakeholders so that it
can be understood, reviewed, and contested. This relates to long-
standing concern in information access on explanation (Tintarev
and Masthoff, 2007), as well as ideas such as scrutable user models
(Kay et al., 2002).

Safety Information access systems can be harmful. They can distribute
false information, promote fake or dangerous products, and pro-
vide support for illegal or malicious activities. These problems
have received attention in the research literature, often under the
general heading of adversarial information retrieval. See related
workshops AIRWeb (Fetterly and Gyöngyi, 2009) and WebQuality
(Nielek et al., 2016).
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Privacy Aspects of users’ profiles including queries, interaction history,
and usage patterns may be highly revealing of sensitive personal
information: consider queries about medical symptoms or clicks
on web pages for addiction counseling. It follows that information
access systems have a duty to protect such information from harm-
ful disclosure. Research on privacy-preserving recommendation
seeks technical solutions to this challenge. Friedman et al. (2015)
provide a survey of this area.

Ethics Computing ethics is concerned broadly with ensuring that the
practice and products of computing adhere to appropriate ethical
principles. The ACM Code of Ethics (ACM Council, 2018) specifi-
cally calls out non-discrimination, along with attention to potential
harms, as an ethical obligation for computing professionals.

The report on the FACTS-IR Workshop on Fairness, Accountabil-
ity, Confidentiality, Transparency, and Safety in Information Retrieval
(Roegiest et al., 2019) discusses how many of these concepts play out
in information retrieval. In this work we are concerned with fairness,
but bring in other concerns as well when they relate to fairness.

1.5 Running Examples

Throughout this monograph, we will use several examples to motivate
and explain the various concepts we discuss.

Job and Candidate Search Many online platforms attempt to connect
job-seekers and employment opportunities in some way. Some of these
are dedicated employment-seeking platforms, while others, such as
LinkedIn and Xing, are more general-purpose professional networking
platforms for which job-seeking is one important component.

Job-seeking is a multisided problem — people need good employment
and employers need good candidates — and also has significant fairness
requirements that are often subject to regulation in various jurisdictions.
Some of the specific fairness concerns for this application include:

• Do users receive a fair set of job opportunities in the recommen-
dations or ads in their feed?
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• If the system assesses a match or fit score for a candidate and a
job, is this score fair, or does it under- or over-estimate scores for
particular candidates or groups of candidates?

• Do users have a fair opportunity to appear in search lists when
recruiters are looking for candidates for a job opening (Geyik and
Kenthapadi, 2018)?

• Do employers in protected groups (minority-owned businesses, for
example) have their jobs fairly promoted to qualified candidates?

• What fairness concerns come from regulatory requirements?

Music Discovery The search and recommendation systems in music
platforms, such as Spotify, Pandora, and BandCamp, connect listeners
with artists. These discovery tools have significant impact not only on
a user’s listening experience and musical enjoyment, but also on artists’
financial and career prospects, due both to direct revenue from listening
and the commercial and reputational effects of visibility. Some specific
fairness concerns include:

• Do artists receive fair exposure in the system’s search results,
recommendation lists, or streamed programming?

• Does the system systematically over- or under-promote particular
groups of artists or songwriters through recommendations, search
results, and other discovery surfaces (Epps-Darling et al., 2020)?

• Do users receive fair quality of service, or does the system sys-
tematically do a better job of modeling some users’ tastes and
preferences than others?

• Do recommendations reflect well a user’s preferences and if not,
are there systematic errors due to stereotypes of gender, ethnicity,
location, or other attributes?

News News search and recommendation influences user exposure
to news articles on social media, news aggregation applications, and
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search engines. Such influence extends to social and political choices
users might make (Kulshrestha et al., 2017; Epstein and Robertson,
2015). Additionally, the filter bubble effect (Pariser, 2011; Alstyne and
Brynjolfsson, 2005) may cause users to be exposed primarily to news
items that reinforce their beliefs and increase polarization. Depending
on the journalistic policy of the provider, news platforms may want to
facilitate balanced exposure to news from across the social, political,
and cultural spectrum, but this may need to be balanced with the need
to de-rank malicious and low-credibility sources.

Specific fairness concerns in news discovery include:

• Does the system provide fair exposure to news on different topics
or affected groups?

• Do journalists from different perspectives receive fair visibility or
exposure for their content?

• Does the system reward original investigators or primarily direct
readers to tertiary sources?

• Do users receive a balanced set of news content?

• Are users in different demographics or locations equally well-served
by their news recommendations?

Philanthropic Giving Online platforms are increasingly a site for phil-
anthropic giving (Goecks et al., 2008), and therefore recommendation
is expected to be an increasing driver of donations. Sites may take an
explicitly “peer-to-peer” approach to such giving, as in the educational
charity site DonorsChoose.org; this results in many possible donation
opportunities for donors to select from, requiring recommendation or
sophisticated search to help match donors and opportunities. As many
philanthropic organizations have a social justice focus, fairness concerns
are essential in developing and evaluating their information access solu-
tions, in particular to avoid potential positive feedback loops in which
a subset of causes comes to dominate results and rankings.

In philanthropic settings, we would expect fairness issues to include:
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• Does the system provide fair opportunities for the various recipi-
ents / causes to have their needs supported?

• Are specific groups of recipients under- or over-represented in the
recommendation results?

1.6 How to Use This Monograph

We have written this monograph with two audiences in mind:

• Researchers, engineers, and students in information retrieval, rec-
ommender systems, and related fields who are looking to under-
stand the literature on fairness, bias, and discrimination, and how
it applies to their work.

• Researchers in algorithmic fairness who are looking to understand
information access systems, how existing fairness concepts do
or do not apply to this set of applications, and the things that
information access brings to the research space that may differ
from the application settings in which fairness is usually studied.

Due to our interest in serving both of these audiences, we do not
expect our readers to have significant familiarity with either information
retrieval or algorithmic fairness, although some background in machine
learning will be helpful. We have organized the material as follows:

• Chapter 2 rehearses the fundamentals of information access
systems. This will be a review for most information retrieval and
recommender systems researchers; such readers should read it for
the terminology we use to integrate the fields, but may wish to
focus their study energy elsewhere.

• Chapter 3 provides an overview of research on fairness in ma-
chine learning generally, particularly in classification. Algorithmic
fairness researchers will likely find this chapter to be a review.

• Chapter 4 lays out the problem space of fair information access,
providing a multi-faceted taxonomy of the problems in evaluating
and removing discrimination and related harms in such systems.
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• Chapters 5 and 6 survey key literature to date (as of 2021) on
fairness in information access, with pointers to research working
on many of the problems identified in chapter 4, focused on the two
most commonly-studied stakeholders: consumers and providers
(with discussion of subjects in section 6.4).

• Chapter 7 discusses the need to go beyond point-in-time views
of fairness to understand fairness over time how the temporal
dynamics of an information access system affect fairness.

• Chapter 8 looks to future work and provides tips for research
and engineering on fair information access.

Chapter 4 is the keystone of this work that ties the rest together;
subsequent chapters work out details in the form of a literature survey
of several of the problems discussed in chapter 4, and the preceding
chapters set up the background needed to understand it. For readers
looking to budget their time, we recommend they ensure they have the
necessary background from chapters 2 and 3, read chapters 4 and 8,
and read the later chapters that are relevant to their work.

1.7 Our Perspective

While we have written this monograph to be useful for researchers
approaching the topic of fairness from a variety of perspectives, we think
it is helpful to explicitly describe our own perspectives and motivations,
as well as the position from which we approach this work and some
limitations it may bring.

Information access systems need to meet a variety of objectives from
multiple stakeholders. They need to deliver relevant results to their users,
business value for their operators, and visibility to the creators of the
documents they present; they often also need to meet a variety of other
goals and constraints, such as diversity across subtopics, regulatory
compliance, and reducing avoidable harm to users or society. Fairness, as
we conceive of it and present it in this paper, is not a be-all end goal, but
rather another family of objectives to be considered in the design and
evaluation of information access systems, and a collection of techniques
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for enabling those objectives. It also does not encompass the totality
of social or ethical objectives guiding a system’s design. Researchers
and developers need to work with experts in ethics, policy, sociology,
and other relevant fields to identify relevant harms and appropriate
objectives for any particular application; the concepts we discuss will
be relevant to some of those harms and objectives.

We also emphasize the importance of starting with a robust problem
framing: chapter 4 is intended to help readers think about the fairness
problem they are trying to solve, and position it in landscape of infor-
mation access; we have then organized our survey in chapters 5 to 7
around aspects of problem definition, instead of underlying techniques.
Metrics and mitigations are best developed and assessed in the context
of a specific, well-defined problem.

Finally, all four authors work in North America, and approach the
topic primarily in that legal and moral context. A Western focus, and
particularly concepts of bias and discrimination rooted in United States
legal theory, currently dominates thinking and research on algorithmic
fairness in general. This is a limitation of the field that others have noted
and critiqued (Sambasivan et al., 2020); our present work acknowledges
but does not correct this imbalance. While we attempt to engage
with definitions and fairness objectives beyond the U.S., this article
admittedly has a Western and especially U.S. focus in its treatment of
the material. We look forward to seeing other scholars survey this topic
from other perspectives.

1.8 Some Cautions

We hope that this monograph will help scholars from a variety of back-
grounds to understand the emerging literature on fairness in information
access and to advance the field in useful directions. In addition to the
general concerns of careful, thoughtful science, work on fairness often
engages with data and constructs that touch on fundamental aspects
of human identity and experience. This work must also be done with
great care and compassion to ensure that users, creators, and other
stakeholders are treated with respect and dignity and to avoid various
traps that result in overbroad or ungeneralizable claims.
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We argue that there is nothing particularly new about this, but that
thinking about the fairness of information access brings to the surface
issues that should be considered in all research and development on
information systems.

1.8.1 Beware Abstraction Traps

Our first caution is to beware of the allure of abstraction. Selbst et al.
(2019) describe several specific problems that arise from excessive or
inappropriate abstraction in fairness research in general. Their core
argument is that the tendency in computer science to seek general,
abstract forms of problems, while useful for developing tools and results
that can be applied to a wide range of tasks, can cause important social
aspects of technology and its impacts to be obscured.

One reason for this is that social problems that appear to be struc-
turally similar arise from distinct (though possibly intertwined) causes
and mechanisms, and may require different solutions. Sexism and anti-
Black racism, for example, are both types of discrimination and fall
into the “group fairness” category of algorithmic fairness, but they are
not the same problem and have not been reinforced by the same sets
of legal and social processes. Discrimination also varies by culture and
jurisdiction, and oppression of what appears to be same group may
arise from different causes and through different mechanisms in the dif-
ferent places in which it appears. Kohler-Hausmann (2019) argues that
social constructivist frameworks for understanding group identities and
experiences imply that even understanding what constitutes a group,
let alone the discrimination it experiences, is inextricably linked with
understanding how that group is constructed and treated in a particular
society — an understanding that is inherently bound to the society in
question, although there may be similarities in group construction in
different contexts.

The result is that unfairness needs to be measured and addressed
in each specific way in which it may appear. While general solutions
for detecting and mitigating fairness-related harms may arise and be
very useful, their effectiveness needs to be re-validated in context for
the harms they are meant to address, a point reiterated by Dwork and
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Ilvento (2018).
Hoffmann (2019) similarly provides several warnings against overly

simple ideas of the harms that can arise from discrimination and bias.
Computational fairness inherits some of these limitations from its ref-
erence material, such as limitations of anti-discrimination law; others
arise from what Hoffmann, Selbst et al. (2019), and others argue are
reductionistic operationalizations of rich concepts. Hoffmann (2019)
notes in particular—and we agree—that treating categories of personal
identity as objective features in a multi-dimensional space (a natural
move for computer scientists) obfuscates the role of technical and social
systems in enacting and producing such categories. This move also has
the effect of reducing intersectionality concerns to what can be captured
by a subspace projection or similar formal operation, whether or not
that corresponds to individual’s lived experience.

We believe computing systems in general, and information access
systems in particular, have the opportunity to advance the the discussion
of emancipation and justice, not just bring existing constructs into
a new domain. Information professionals have long been concerned
about issues of ethics and justice. Just as two examples, we note that
Edmund Berkeley, one of the founders of the Association for Computing
Machinery, was an outspoken advocate for the ethical responsibilities
of computer scientists as far back as the 1960s (Longo, 2015), and
the creation of Computer Professionals for Social Responsibility in the
mid-1980s (Finn and DuPont, 2020). The call here is to realize that
vision fully and for all people affected by information access systems.

1.8.2 Beware Limits

It is crucial to be clear about the limitations of particular fairness studies
and methods. Any work will be limited, if for no other reason than
the impossibility of completely solving the problem of discrimination.
Those limitations should not paralyze the research community or keep
researchers from doing the most they can to advance equity and justice
with the resources available to them; rather, work in this space needs to
be forthright and thorough about the limitations of its approach, data,
and findings. Some limitations common to this space include:
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• Single-dimensional attributes for which fairness is considered,
when in reality people experience discrimination and oppression
along multiple simultaneous dimensions.

• Binary definitions of attributes, when in reality many social di-
mensions have more than two categories or exist on a continuum.

• Taking attributes as fixed and exogenous, when social categories
are complex and socially constructed (Hanna et al., 2020).

• Incomplete, erroneous, and/or biased data (Olteanu et al., 2019;
Ekstrand and Kluver, 2021).

This is not to say that work on single binary attributes is not useful;
research must start somewhere. But it should not stop there, and authors
need to be clear about the relationship their work in its broader context
and provide a careful accounting of its known limitations.

Some methods are so limited that we advise against their use. For
example, some work on fair information access has used statistical
gender recognition based on names or computer vision techniques for
gender recognition based on profile pictures.2 This source of data is
error-prone, subject to systemic biases (Buolamwini and Gebru, 2018),
reductionistic (Hamidi et al., 2018), and fundamentally denies subjects
control over their identities, so we do not consider it good practice.

1.8.3 Beware Convenience

Researchers working in this problem space also need to be careful to do
the best research possible with available resources, and work to expand
those resources to increase the quality and social fidelity of their work,
and not take the path of least resistance.

One particular application pertains to this article itself and to its
proper use and citation. It is convenient and common practice to cite
survey papers to quickly summarize a topic or substantiate its relevance.

2We do not provide citations to support the claim that this is in use because our
purpose in this paragraph is to critique a general trend, not to focus on any specific
paper. Elsewhere in this monograph, we cite work making use of these techniques
where it makes a relevant contribution.
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While we naturally welcome citations of our work, we would prefer
to be cited specifically for our contributions to the organization and
synthesis of fair information access research. The purpose of much of
this monograph is to point our readers to the work that others have
done, and we specifically ask that you cite those papers, instead of —
or in addition to — this one when that work is relevant to your writing
and research.



2
Information Access Fundamentals

Information access refers to a class of systems that support users by
retrieving items from some large repository of data. The area covers both
information retrieval and recommendation systems. More concretely,
the information access problem can be defined as:

Given a repository of items and a user information need,
present items to help the user satisfy that need.

The repository may be the results of a hypertext crawl as in web search,
a catalog of products as in commercial recommendation, corporate
documents as in enterprise search, or a collection of songs as in music
recommendation. An information need refers to the latent concept or
class the user seeks. Although unobserved, this need may inferred from
explicit expressions from the user (e.g. a keyword query, a question, or
a set of example documents) or implicit data about the user (e.g. previ-
ously consumed content, time of day). The presentation of items refers
to the system response and might be a ranked list, a two-dimensional
grid, or some other structured output. Finally, satisfaction is a measure
of the degree to which the system response fulfilled the user’s need. This
may be explicit (e.g. ratings, binary feedback) or implicit (e.g. clicks,
streams, purchases).

22
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Figure 2.1: A typical information access pipeline consists of item understanding,
user understanding, item retrieval, item rendering, behavior understanding and
evaluation.

In this section we provide a brief overview of the fundamentals of
these systems, both for our readers who are not familiar with information
retrieval or recommender systems, and to provide terminology for our
integration of the topics.

2.1 System Overview

The process of meeting an information need involves several steps;
Figure 2.1 shows one view of the components carrying out these steps
and their relationships. These pieces include:

• Understanding (with a computationally-useful representation) the
items to be retrieved, so they can be connected with information
needs.

• Understanding the user and their information need, so that it can
be matched to relevant items.

• Retrieving items that match the need.

• Rendering the set of retrieved items for presentation to the user.
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d P D Item in a repository
φcpdq Content representation of an item d
φmpdq Metadata representation of an item d
φupdq Usage representation of an item d
q P Q Information needs with the space of possible needs
ρφpqq Feature-based expression of information need
ρDpqq Item-based expression of information need
ρ`pqq Language-based expression of information need

ρglobalpqq Inferred global information need
ρlocalpqq Inferred local information need
r P Z` A rank position from the set of possible ranks

u : D Ñ < Item utility function
δ : Z`

Ñ r0, 1s Rank discount function

Table 2.1: Summary of notation for chapter 2.

• Understanding users’ behavior, particularly in response to pre-
sentations of retrieved results, to inform future retrieval and to
evaluate the system’s ability to meet user needs.

2.2 Repository of Items

As we have defined it, information access is the process of retrieving
items that are contained in a repository. Terms for this can vary; in
text-oriented information retrieval, these are often called “documents”
in a “corpus”. The curation of this repository involves a variety of
subtasks and algorithmic research, including content creation, content
collection, and content representation.

Content creation refers to the complex organizational, social, eco-
nomic, and political dynamics that result in the creation of an item. This
includes items that may be created in relative isolation by a hobbyist
(e.g. a self-produced song) or as a result of more complex coordination
amongst many contributors (e.g. a major motion picture); together, we
call these the providers of the item. Regardless of this variation in
apparent scale, such cultural objects are always an artifact of social rela-
tionships (Becker, 1982). As such, each item reflects potentially a major
stakeholder or stakeholders upon whom a livelihood may rest but also
a network of supporting stakeholders, each of whom may have a variety
of incentives for participating in the item’s creation and consumption.
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Content collection refers to the processes and policies involved in
adding or removing items from the repository. In the simplest case,
content collection involves receiving a static archive of items or docu-
ments from some external party. More often, the repository is dynamic,
provided as a feed of items to add or remove from the the repository,
as with news articles or products. However, it is often the case that
the repository designer has some control over content collection, either
because the content must be found (as in hypertext crawling (Pandey
and Olston, 2008)), curated (e.g. by removing low quality or adversarial
content, or simply caching for performance reasons), or contracted for.
Without loss of generality, we refer to the repository of items at the
time when the user engages with the information access system as D, a
set of indices mapping into the items.

Content representation refers to the information we have about
an individual item. Item representation in general consists of three
parts: content, metadata, and usage data. In most cases, the content
of an item is static and is an artifact created by the author(s) at some
fixed point in time. This might be the text of a academic article, the
pixels of an image, or the audio file associated with a song. We refer to
the content representation of an item d P D as φcpdq.

The metadata of an item expresses information about the content,
including when it was authored, the name of the author, the genre of
the item, etc. Metadata may also be inferred by a machine such as
with “learned representations” or algorithmically-assigned genre labels.
Furthermore, metadata may be dynamic, changing as a function of the
world around the item. For example, this might include frequency of
access (outside of a search or recommendation context) or popularity of
the author. We refer to the metadata representation of an item d P D
as φmpdq.

Finally, usage data about an item refers to the historic interaction
between information needs (or their expression) and the item. This
might include, for example, the set of users who consumed the item,
the queries for which this item was clicked, etc. Usage features can be
seen as a special type of metadata that have three unique properties:
they are often more biased by system decisions; they are often highly
suggestive of relevance; and they are updated over time as users interact
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with the system and its items. We refer to the usage data representation
of an item d P D as φupdq.

2.3 Users and Information Needs

The system is used by users (or consumers), who rely on it to meet
some information need. When a user approaches the system, they
may do so for a variety of reasons with varying degrees of specificity
and explicitness. Their need may isolated (e.g. answering a specific
question), a function of mood (e.g. playing a genre of music), or an
element of a task the user is involved in (e.g. finding reviews before
making a purchase). Whatever the need, we represent the space of needs
as Q, and individual needs as q P Q.

An information need can arrive in a variety of ways. In most infor-
mation retrieval systems, users can explicitly express their need. One
such family of expressions are “feature-based” expressions, where the
searcher explicitly describes item representation values likely to be
found in relevant items. For example, a keyword query suggests that
the items containing the keywords may be more relevant than those
not; a faceted query may indicate a time range or class of items more
likely to be relevant. We represent the feature-based expression of an
information need q P Q as ρφpqq. Alternatively, the user may provide a
set of example relevant or non-relevant items (Smucker and Allan, 2006).
We represent the item-based expression of an information need q P Q
as ρDpqq. Finally, the user may express their need by some other means
such as a natural language question or description.1 We represent this
expression of an information need q P Q as ρ`pqq.

An information need may also be expressed implicitly, and these
implicit aspects can be global or local. An implicit global expression
reflects relatively stationary properties of the users across access ses-
sions. This may include demographic information about the user, their
previously accessed items, or information provided or inferred about

1Although, because both natural language questions and text items share a
symbolic representation, it is tempting to treat a natural language question as a
feature-based expression, the generating processes behind questions and documents
are sufficiently different that this would be a mistake.
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their preferences. We represent the global implicit expression of an
information need q P Q as ρglobalpqq, which serves as the user repre-
sentation. An implicit local expression reflects properties of the user
or their interactions that typically vary across access sessions. This may
include the items viewed or interacted with within the session. Impor-
tantly, this also includes the ‘surface’ of the search or recommendation
platform itself, since the type of access or need may be suggested by
the user’s entry into the system; for example, a “discovery” feature
versus a “mood” feature in a music streaming platform. Implicit local
aspects of the need also includes contextual information such as time
and location, which are meaningful parts of the description of many
needs. We represent the local implicit expression of an information
need q P Q as ρlocalpqq. We note that the distinction between local and
global can be fluid, especially in hierarchical information access (e.g. a
collection of sessions with a shared goal) (Jones and Klinkner, 2008).

2.4 Presentation

Given an information need and our repository, there are various ways to
present results to users within the constraints and capabilities of the
particular user interface. In this section, we describe several of the types
of presentation formats that influence algorithm and system design.

A single turn refers to a user approaching the system with a one-shot
request and receiving an isolated system response. A recommendation
system home page or isolated search query are examples of this type
of presentation context. The simplest presentation involves the system
providing a single item to satisfy the user’s information need. This
might occur in limited surfaces like small screens or audio interfaces.
In situations where the interface allows, a ranked list of items can
be presented, which the user can serially scan from the top down;
much historical work on information retrieval and recommender systems
assumes such a layout, and it underpins common evaluation metrics.
A popular way to present image-based results is a two-dimensional
grid layout (Guo et al., 2020; Xie et al., 2019). Finally, immersive
environments allow for three-dimensional layouts of items (Leuski and
Allan, 2000).
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When items have text summaries (e.g. a description or teaser con-
tent), they can be presented alongside the item identifier (e.g. a title
or URL) to let the user inspect the item without consuming it in its
entirety (e.g. reading a whole web page, watching a whole movie). In
some cases, the system can detect a specific part of the content to help
the user better make a decision (Luhn, 1960; Tombros and Sanderson,
1998; Metzler and Kanungo, 2008).

2.4.1 Interaction and Sessions

In reality, almost every information access system involves multiple
interactions in order to satisfy a single information need. Users engage
with search systems in sessions composed of multiple queries. Users
engage with recommendation systems by navigating through pages,
websites, and application interfaces before settling on relevant content.
These settings consist of system decisions (such as those in single
turn scenarios) interleaved with implicit and explicit user feedback,
allowing the algorithm to adapt its behavior. For example, streaming
audio systems (e.g. radio-like interfaces) involve a sequence of single
item decisions interleaved with user skips or other behavior. A dialog-
based recommendation system similarly exhibits multiple turns before
resolution. At a temporally-extended level, an information need or
task may be spread across multiple sessions, such as assembling a
bibliography for a class or survey.

2.4.2 Rankings

No matter the final presentation mode, systems typically operate in
terms of rankings of items. The simplest, and historically most com-
mon, ranking is to sort items by decreasing relevance according to the
probability ranking principle (Robertson, 1977). Items can be ranked in
other ways as well (see 2.6.5); the system may display the items in order
in which the underlying algorithm ranked them, or it may rearrange
them (e.g. into a grid) or combine the results of multiple rankings (e.g.
the rows of rankings display common in video streaming services), but
the ranking is the fundamental unit of algorithmic output considered in
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most information access research, and constitutes the ‘decisions’ that a
search or recommendation algorithm typically makes.

2.5 Evaluation

Classic information access evaluation of a system decision uses a model
of the user interaction together with a item-level utility estimate (e.g.
an item label or behavioral signal) to measure the the extent to which
the system has satisfied the information need (Chandar et al., 2020).

There are two forms in which this evaluation can take place: situated
and simulated. Situated evaluation places the algorithm or system in
front of real users, operating the system in the exact environment in
which it will be deployed. Simulated evaluation uses data and algorithms
to create a controlled, repeatable simulation of user behavior and metrics.
Offline evaluation, including off-policy evaluation, is an example of this
approach. As with any simulation, the assumption is that the simulator
— or log data — can be used in a way that predicts performance
in a situated setting (Ferro et al., 2018). Situated evaluation, on the
other hand, while considering the state of the world as potentially
non-stationary and ephemeral, is more costly in terms of risk to users,
time, and engineering effort.

2.5.1 Estimating Item Utility

Given some expression of an information need and a repository, we would
like to estimate the utility of each item to the information need for
evaluation purposes. We contrast this from utility estimation performed
by a system before presenting results to users because, in the evaluation
context, we can exploit information about the information need and
item that may be unavailable at decision time. This information may
be unavailable because of prohibitive labeling cost (e.g. manually rating
documents in response to search query) or because the user has yet to
observe or experience the item.

Explicit labels refer to utility estimates manually provided by some
person. User-based explicit labels can be gathered by providing users
with the option to rate items during or after the access or as part of
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some on-boarding process, as is performed in many recommendation
systems. It is important to understand the user’s annotation mindset,
especially when gathering labels during an access task. Are these labels
judgments about the quality “in the context” or “in general”? There
is often ambiguity in the precise semantics of a rating of label that
can cause confusion in evaluation. In some situations, primarily in
search, the information need and items are easy to understand by a
third party and, therefore, “non-user” assessors can be employed to
gather item quality estimates. Editorial explicit labels can be gathered
using explicit guidelines, reducing some of the labeling ambiguity found
in user-based explicit labels. However, these labels are limited by the
interpretability of the information need and relationship of items to it.
In many recommendation contexts, we expect utilities estimates to be
user-specific and perhaps idiosyncratic expressions of interest and taste
to which a third-party evaluator would not have access.

Implicit labels refer to utility estimates derived from observed user
behavior believed to be suggestive of utility. Logged signals like clicks,
streams, purchases, and bookmarking all have been found to have this
property in information retrieval (Kelly and Teevan, 2003). These signals
depend critically on the domain. A click may be suggestive of utility
in web search but not in news recommendation where the headline
alone might satisfy the user’s information need. The precise relationship
between post-presentation behavioral signals is often complex deserving
its own modeling effort.

Feedback like clicks, streams, or bookmarking all are meant to
capture the instantaneously-measurable utility of an item and may not
provide an accurate reflection of its longer-term utility to a particular
task or mood, or the lifetime value of the product to the user. Clicking
or inspecting a document may be suggestive of the utility of an item
within the context of an individual ranking or system ordering but may
have low utility for a user’s higher level goal or task. As such, when
there is measurable, longer-term utility (e.g. task completion, item
purchase, user retention), we can attempt to attribute that longer-term
utility to earlier system decisions using methods from causal inference,
reinforcement learning, and multicriteria optimization (Mann et al.,
2019; Chandar et al., 2020).



2.5. Evaluation 31

2.5.2 Evaluating System Decisions

Although understanding item utility is critical to evaluating an infor-
mation access system, these items are presented in a structured output,
usually a ranked list. So, while the previous section described how we
might estimate an item’s utility, we are really interested in measuring
the system’s ability to provide users with high utility items in the course
of their interactions with the system in support of their long term goal.

Situated Evaluation

In an online environment, we can adopt situated evaluation by inspecting
interaction data such as short-term and longer-term behavioral signals
(e.g. clicks, streams, or purchases). This data can be used to estimate
the utility of consumed items (section 2.5.1) and, by aggregating across
users and needs, measure system performance. In practice, because we
are often comparing pairs of systems, these metrics are computed in
well-designed A/B tests (Kohavi et al., 2020).

Simulated Evaluation

In offline evaluation, we can simulate online evaluation using a combina-
tion of data and user browsing models. Simulation allows for highly
efficient testing of algorithms, and avoids any risk to users, who may
not be interested in being subject to A/B experiments. If simulation
data and models are freely shared amongst the research community,
this allows for standard benchmarking protocols, such as have been
adopted in NIST’s TREC evaluations. While the use of labeled data and
an evaluation metric are not often considered simulation, one reason
we adopt this framing is that it centers the key objective that should
guide design decisions in such an evaluation: credibly estimating likely
performance with respect to the information-seeking task(s) the system
is designed to support.

The data involved in offline evaluation consists of estimated item
utility for a set of information needs (section 2.5.1), often called “qrels”
(for query relevance). Traditional evaluation such as used in most TREC
competitions primarily uses explicit labels from assessors.
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Given this data and a system decision (e.g. a ranking), the offline
evaluation model simulates the behavior of a user engaging with the
system decision. At the termination of the simulation, a metric value
(or values) is returned. Although many offline evaluation methods can
be computed analytically, each encodes a specific information access
model, carrying assumptions about user behavior.

In general, many analytic evaluation metrics involve an inner product
between the vector of item utilities at each rank and a rank-discount
factor (Carterette, 2011). This can be represented in general form as:

µpπq “

|D|
ÿ

r“1
δprqupπrq (2.1)

where δ : Z` Ñ r0, 1s is the rank discount function mapping from
possible ranks to the r0, 1s interval, π P S|D| is the system ranking, and
u : D Ñ < is a item utility (for this information need). The implicit user
browsing model is encoded in δ, which reflects the probability estimate
that a user will inspect an item at a particular rank r. So, for binary
relevance, precision-at-k can be defined with:

δP@kprq “

#

1
k r ď k

0 r ą k
(2.2)

This corresponds to the expected utility for a user that randomly selects
an item from amongst the top k ranks. For rank-biased precision (Moffat
and Zobel, 2008),

δRBPprq “ p1 ´ γqγr´1 (2.3)

where γ is a hyperparameter. This browsing model models a user who
sees an item at rank position r with exponentially decreasing probability.
This is proportional to the expected utility of the last item inspected.

2.5.3 Evaluation Encodes Human Values

Because many modern information access systems optimize performance
toward an evaluation metric or utility, system designers should be aware
of the variety of personal and societal values imbued in those definitions.



2.6. Algorithmic Foundations 33

Guidelines for human assessors, heuristics to detect utility in log data,
and selection of longer-term utility all are contestable phenomenon
and should be interrogated before being incorporated into a production
pipeline or presumed to be objective in an academic paper (Stray, 2020).

2.6 Algorithmic Foundations

Information access algorithms are responsible for locating the items
that will satisfy the user’s information need. These algorithms often
work by estimate the utility of the document to an information need
through a scoring function spq, dq, and using these utility estimates
to rank results. These rankings may also be stochastic (Diaz et al.,
2020), expressed as a policy πpqq defining a distribution over (possibly
truncated) rankings of documents. Deterministic rankings can be treated
as a policy placing all probability mass on a single ranking.

Our purpose here is not to provide a comprehensive treatment of
information access algorithms but to provide enough information on
their key concepts that scholars familiar with machine learning can
understand the particularities of information access that are important
for understanding how its fairness concerns differ from those of other
ML applications. Readers can find details on algorithmic foundations in
a variety of information retrieval textbooks (Rijsbergen, 1979; Manning
et al., 2008; Croft et al., 2010).

There are several distinguishing factors between different algorithmic
approaches to meeting information needs:

• What data about needs and items is used, and how is it repre-
sented?

• Is utility directly estimated or learned through optimization?

• For what objective are utility estimates optimized?

• How are utility estimates used to produce the final ranking?

For example, many techniques make use of item content φcpdq

in some way, but the family of recommendation algorithms called
collaborative filters ignore document content entirely and use patterns
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in historical user-item interaction records from ρglobalpdq as the sole
basis for estimating relevance and ranking items.

2.6.1 Vector Space Model

A long-standing approach to representing items with substantial content
information, especially documents and queries is to represent them as
vectors in a high-dimensional space. In the bag of words model, this is
done by treating each word (or term t P T ) as a dimension and locating
documents in |T |-dimensional space based on the relative frequency
with which they use different terms (Salton et al., 1975). With such
an approach, a document d’s φc and a need q’s ρφ (and/or ρ`) can be
represented as vectors xd and xq, and the system can estimate relevance
by comparing the vectors (often using the cosine spd|qq “ cospxd,xqq).

The precise definition of the vectors is usually based on the term
frequency, and — for document representations — normalized by the
document frequency to give greater weight to terms appearing in fewer
documents (and thus more useful for locating documents relevant to
information needs for which those terms appear in the query). One
common representation is term frequency — inverse document frequency,
or TF-IDF:

xd,t “ TFpd, tq ¨ IDFpdq

These vectors form the rows of the |D|ˆ|T | document-term matrix X.
If both document and query vectors are normalized to unit vectors, then
the similarity can be estimated with the inner product spd, qq “ xd ¨ xq.

Vector space models can also be used without query or document
content. Pure collaborative filtering algorithms compute recommen-
dations based solely on users’ ρglobal by using a ratings matrix — a
partially-observed |U | ˆ |D| matrix recording users’ past interactions
with items, either through implicit feedback (whether or how frequently
the user has consumed the item) or explicit feedback (an ordinal or
real-valued preference, such as a rating on a 5-star scale). Relevance
estimation is often done via neighborhoods: finding other users similar to
the user needing information and scoring items by a weighted average of
these neighbors’ ratings (Herlocker et al., 2002), or finding items similar
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to those rated by the current user (Deshpande and Karypis, 2004). In
both cases, ρglobal consists of the user’s past ratings or interactions with
items.

One important similarity between the document-term matrix and
the ratings matrix is that they are both sparse and incomplete. Most
documents do not contain most words (sparsity); most documents do
not contain all synonyms and paraphrases (incompleteness). Most users
have not consumed most items (sparsity); most users have not provided
ratings for all items they have consumed (incompleteness).

The term-based vector space model can also be integrated with user
history for content-based recommendations; in this case, a transformation
of the items in the user’s history, such as the sum or average of their
term vectors, is used as a query vector to locate items that match ρglobal
on the basis of their associated features or terms instead of user-item
interaction patterns.

2.6.2 Embedding and Optimizing Utility

Two significant developments move beyond the vector space model, and
form a key component of modern information access algorithms. The first
is representing (or embedding) documents and information needs with a
common lower-dimensional space (called a latent feature space), resulting
in an item embedding. Introduced for information retrieval as latent
semantic analysis (Deerwester et al., 1990), one approach is to take the
truncated singular value decomposition of the document-term matrix
X “ DΣT. The left and right singular matrices of this decomposition
provide a low-rank representation of documents (D P R|D|ˆk) and a map
from term vectors into this vector space (T P Rkˆ|T |). This facilitates
compact and efficient document representation and comparison (for
example, similar documents can be located by comparing their vectors
in D), and allows documents to match information needs that do not
contain any of their terms but do contain synonyms.

Variants of this technique have seen widespread use in recommender
systems (Koren et al., 2009), where the ratings matrix is decomposed
into low-rank representations of users and items. The sparsely-observed
nature of the ratings matrix and the computational complexity of SVD
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have led to a space of approximation techniques for matrix factorization.
In practice, the user-feature and item-feature matrices are inferred
through stochastic gradient descent (Funk, 2006) or alternating least
squares (Takács and Tikk, 2012) to minimize the reconstruction error
on the observed values of the ratings matrix.

Learning decompositions through optimization is an instance of
the second of these developments: estimating utility through machine
learning models. This is now the basis of most current information
access research. Models can become quite complex and incorporate
multiple aspects of items and information needs simultaneously, but
their fundamental operation is to learn a function spd|qq, that estimates
the item’s relvance to the given need q based on observations, such as
search result clicks, purchases, or product ratings. These estimates can
be rating predictions, in the case of recommender systems with explicit
ratings, or other estimates such as the probability of the user clicking a
result (studied under the label of CTR prediction) or the probability
that the document is relevant to the user’s need (a common framing
for search). Learned utility models can also be implemented directly on
a vector-space representation, as in the SLIM technique for learning
neighborhood interpolation weights (Ning and Karypis, 2011).

2.6.3 User Modeling

The user model is the component of a personalized information access
system — recommendation, personalized search, and other systems that
respond to ρglobal containing a user’s historical interaction with the
system — that represents the user’s preferences for use in the rest of
the system. It is often latent in the system architecture; for example,
in the vector space model of collaborative filtering, the user model is
just the set or bag of items with which the user has interacted with in
the past, and in an embedding-based system it is the user’s embedding
(and the means by which this embedding is computed).

One early user model for book recommendation by Rich (1979)
represented users as probability distributions over a set of stereotypes
that was incrementally refined through text-based dialogue with the
user. Contemporary systems often learn latent user models from the
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user’s history, typically taking the form of a user embedding (sec-
tion 2.6.2). Since user activity occurs over time and users’ preferences
are not necessarily stable, some techniques such as that of Koren (2010)
decompose user preference into long-term stable preference and short-
term local preference, to separately model the user’s persistent taste
and ephemeral current interests.

The fundamental idea, common to all these techniques and many
more, is that a personalized system will often have a representation of
ρglobal, computed by a suitable statistical model, that is then used by
the final scoring and ranking logic in order to estimate the relevance of
an item to the user’s information need in accordance with their personal
preferences. Whether this is an entirely separate model, computing and
storing user model representations to be used as input data for a ranker,
or a sub-component of an end-to-end ranking model depends on the
system architecture.

2.6.4 Learning to Rank

Learned relevance models are not limited to learning pointwise relevance
estimates given observed utility signals. Learning to rank (Liu, 2007)
moves past learning to predict pointwise item-need utility and instead
optimizes the learning model to rank items consistently with their ability
to meet the user’s information need. In the case of binary relevance (the
simplest form of utility label), the system learns to rank relevant items
above irrelevant items. Such systems often still learn a scoring function
spd|qq, but the function is optimized to produce scores that correctly
order documents, regardless of the precise values of those scores, instead
of its ability to estimate relevance judgments.

One approach is to optimize pairwise ranking loss; a key example of
this in recommender systems is Bayesian Personalized Ranking (BPR;
Rendle et al., 2009). Given an information need q, BPR optimizes the
probability Ppspd`|qq ą spd´|qqq for a randomly-selected relevant item
d` and irrelevant item d´ by maximizing logistic ps pd`|qq ´ s pd´|qqq

(this is equivalent to maximizing the area under the ROC curve). Pair-
wise loss functions can be applied to a wide range of ranking models
(including matrix factorization, neighborhood models, and neural net-
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works) for both recommendation and information retrieval.

2.6.5 Re-ranking

Many information access techniques do not depend only on a single
ranking step. Re-ranking approaches use a base ranking model —
which can be directly estimated, learned from pointwise optimizations, or
a learning-to-rank model — and adjust the outputs to achieve additional
goals.

One application of re-ranking is to improve the diversity of re-
sults. Maximum marginal relevance (MMR) adjusts the ranking
to balance, at each position, maximizing spd|qq with minimizing the
similarity between the new item and previous items (Carbonell and
Goldstein, 1998). The idea behind this approach is that relevance is not
independent: if one item does not meet the user’s need, then another
very similar item is also unlikely to meet their need, and therefore
the second position should go to an item that is likely to match the
query given that the first document did not (Goffman, 1964). Ziegler
et al. (2005) provides another approach to diversifying a result list that
operates purely over item orderings instead of balancing similarity or rel-
evance scores. As we will see later in this survey, re-ranking is a common
approach for improving certain types of fairness in recommendation
lists.

Another use for re-ranking is to improve the efficiency of a system
facilitating access to a large repository. Learned relevance or ranking
models often have significantly higher computational cost than vector
space models, which can be heavily optimized through index structures.
One approach, therefore, is to use a simple first-pass ranker to retrieve
a pool of candidate items that is significantly larger than the final result
list but much smaller than the repository. A more complex ranking
algorithm, possibly employing modern deep learning models, re-ranks
these candidate items to produce the final ranking.



3
Fairness Fundamentals

As noted in section 1.2, the second decade of the 21st century has
brought significant attention to the issue of fairness in computing sys-
tems, particularly (but not exclusively) machine learning and statistical
tools for use in decision support contexts (Mitchell et al., 2020). This
arises at the intersection of increasing adoption of machine learning
technologies in sectors with direct real-world effects such as healthcare,
public policy, and law enforcement, and extensive discussions on justice
and equity in society at large. Fairness but one of several dimensions
in which the social impact of computing systems are under scrutiny;
a community has coalesced around studying “Fairness, Accountability,
and Transparency”1, and the topic arises in discussion fora on AI ethics
and in the various communities working directly on artificial intelligence,
machine learning, data mining, and information retrieval, among others.

In this chapter, we provide a brief overview of the landscape of
algorithmic fairness: its fundamental concepts and definitions, sources
of unfairness or bias, some methods for reducing the unfairness of
machine learning systems, and pointers to additional research topics.
We refer readers to papers by Mitchell et al. (2020) and Barocas and

1The FAccT conference (https://facctconference.org) and related venues.
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Selbst (2016), as well as the in-progress book by Barocas et al. (2019),
for more in-depth treatment of these topics.

Algorithmic fairness in general is concerned with going beyond
the aggregate accuracy or effectiveness of a system — often, but not
always, a machine learning application — to studying the distribution
of its positive or negative effects on its subjects (distributional harms)
and the ways those subjects are represented by and in the system
(representational harms; Crawford, 2017). Much of this work has
been focused on fairness in classification or scoring systems; Mitchell
et al. (2020) provide a catalog of the key concepts in this space, and
Hutchinson and Mitchell (2019) situate them in the broader history of
fairness in educational testing where many similar ideas were previously
developed. There are many ways to break down the various concepts of
algorithmic fairness that have been studied in the existing literature,
which we summarize in Table 3.2.

While “algorithmic fairness” is the label used for this research, it
does not encapsulate one goal, but rather covers a spectrum of equity
concerns. Selbst et al. (2019) identify a number of “abstraction traps”
surrounding fairness research, one of which is the formalism trap:

Failure to account for the full meaning of social concepts
such as fairness, which can be procedural, contextual, and
contestable, and cannot be resolved through mathematical
formalisms.

This fundamental contextuality and contestability, combined with
the incompatibility of disparate notions of fairness (Friedler et al., 2021),
imply that universal fairness is not an achievable (or arguably even
meaningful) concept.

What can be done, and what much of the research on algorithmic
fairness is concerned with, is to identify specific ways in which a system
may be unfair, and develop tools to measure and mitigate this unfairness.
Determining the ways in which a system may be unfair, and how
those failure cases should be assessed and addressed in any particular
application, is a domain- and application-specific process that needs
to be carried out in consultation with a broad set of stakeholders and
subject experts.
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vi „ V Input covariates for instance i
yi „ Y Observed outcome for instance i
ψpviq Computed score for instance i
δpviq Decision for instance i
ai Sensitive attributes for instance i
xi Non-sensitive attributes for instance i

∆inpvi, vjq Distance between observations of instances i and j
∆decpδpviq, δpvjqq Distance between decisions for instances i and j

Table 3.1: Summary of notation for chapter 3.

There are many different terms that are used, sometimes inter-
changeably and sometimes with nuanced differences, in scholarship and
surrounding discourse on algorithmic fairness. The terms “bias” (Baeza-
Yates, 2018), “fairness” (Dwork et al., 2012), “discrimination” (Kamiran
and Calders, 2012), “equity” (Katell et al., 2020), and “justice” (Lee
et al., 2019), among others, are used variously by different authors to
discuss the interrelated concerns and phenomena under study. In much
of the literature, terms and concepts are borrowed from legal analysis,
particularly the scholarly tradition around U.S. anti-discrimination law
(Barocas and Selbst, 2016); Hoffmann (2019) discusses some of the
limitations of this trend. D’Ignazio and Klein (2020, p. 60) call for chal-
lenging the power structures of data science and its applications, and
identify some terms (including “bias” and “fairness”) with perspectives
that uphold existing power structures and others (such as “equity” and
“justice”) with questioning and dismantling those structures. Not all
authors use terms in the same way, or with the same nuances.

Just as there are many ways in which a system can be unfair, there
are also many places in which unfairness can be introduced in any
particular system. In Section 3.1, we provide an overview of how each
step of the pipeline may introduce biases that give rise to unfairness.

In this chapter, we focus primarily on supervised classification prob-
lems and adopt the notation and conventions of Mitchell et al. (2020).
Given an individual i with observed features vi and observed outcome
yi, modeled as samples from random variables V and Y , the goal is to
learn and evaluate a decision function δpviq. δ is often structured as a
(possibly probabilistic) decision process f applied to an underlying score
ψ, such that δpviq “ fpψpviqq. The goal is to make “correct” decisions,
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so that yi “ δpviq; we may also wish to accurately estimate probabilities,
such that ψpviq “ PpY “ 1|V “ viq.

Throughout this chapter, we will use two examples: lending and
hiring. Lending is a classic setting for classification: the decision function
δpviq determines whether i will be granted or denied a loan, and the
goal is to grant loans to all applicants who will pay them (we assume
for the moment no limit on funds to lend). A hiring decision is closely
related to the task of job and candidate recommendation introduced
in section. A decision might be to choose whether or not to move on a
candidate to the next level of review, but the score ψpviq could also be
used to rank candidates for presentation as recommendations to hiring
manager.

One key concept in fairness, that we discuss in more detail in
sections 3.2.2 and 3.2.3, is the idea of individual and group fairness.
Individual fairness is concerned with treating similar individuals simi-
larly, while group fairness is concerned with identifying and addressing
differences between groups of data subjects. These groups are often the
kinds of groups treated in anti-discrimination law, such as gender, race,
or religion; to represent these groups, we can decompose an individual’s
covariates vi “ pai, xiq, where ai is the sensitive attribute(s) (some-
times called “protected characteristics”) recording group association
and xi is the other attributes (non-sensitive attributes).

3.1 Sources of Unfairness

Before discussing how to measure and precisely define unfairness, we
first discuss where it can enter into the system. The harms that are
discussed under the rubric of fairness typically arise from some kind
of bias, where observations or outcomes are different — at least in
expectation — from what they would be if the bias or unfairness were
not present. These biases can arises in many places: in society, in the
observations that form our data, and in the construction, evaluation,
and application of decision support models (Suresh and Guttag, 2019).

Friedler et al. (2021) use the idea of construct spaces and observation
spaces to define biases in terms of skews in observation and decision-
making processes. The construct feature space (CFS) contains the
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Figure 3.1: A view of the machine learning pipeline. The environment (natural and
social) is observed through data. This data is used to develop and train a model,
which produces results of some form, and is used to evaluate those results. The results
are also acted on by people, individually or socially, who impact the environment for
the next round of modeling.

‘true’ features that we would use to make decisions in an ideal system,
such as the applicant’s ability to repay a loan or the job candidate’s
ability to carry out the duties of a position.

The CFS is unobservable; instead, we have access to the observation
feature space (OFS), which is the result of an observation process
that results in the input features for the actual decision process (vv);
the OFS also contains the observed outcomes yi for training data. For
example, in looking at a loan application, the decision system would
see the applicant’s current salary, assets, and other financial details and
these would form the set of observations on which the decision is made.
Similarly, a hiring system might see the candidate’s recent employment
history, educational credentials, etc. as its OFS.

Decisions are made on the basis of these features, yielding the
observation decision space (ODS); the goal is for these decisions to
match what they would be if made on accurate and perfect information
(without discrimination), the construct decision space (CDS).

We focus our own discussion on sources of unfairness on stages of
the pipeline or feedback loop in algorithmic decision support. Figure 3.1
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shows the various elements of this process, from initial observations to
human response the model that affects the natural and social world
that will be observed in future iterations; it is the ML equivalent of
fig. 2.1. Unfairness can arise at any stage in this process, and may be
propagated, mitigated, exacerbated, or even re-introduced either at that
stage or at further downstream stages.

First, the world itself may be unfair or unjust. One source of
such injustice is historical and ongoing discrimination. For example,
redlining in United States housing policies (Rothstein, 2017) prevented
Black Americans from purchasing homes in wealthier neighborhoods;
the neighborhoods where they were allowed to live typically had lower
investment in parks, schools, and other amenities to improve quality of
life and childhood development. An entirely accurate survey of family
wealth disaggregated by race will reveal significant racial disparities,
not because there are innate racial differences in the ability to develop
generational wealth (a difference in Friedler et al.’s construct space
[2021]), but because Black residents were prohibited by private-sector
and governmental policy from accessing the same opportunities for
wealth-building through home ownership as their White would-be neigh-
bors. Thus, the OFS in a loan decision system, focused on financial
indicators, would inevitably look quite different for the average Black
applicant as opposed to the average White one.

Redlining has further follow-on effects that result from things such
as disparate quality of education. The effects of such discrimination
also often extend beyond the end of official practice and policy. As
with lending, a hiring decision maker looking at educational aspects
of candidates’ applications may see differences in attainment (OFS)
reflective of this history rather than being reflective of differences in
ability (CFS) that are relevant for the position.

Group size can also play a role in some types of unfairness (Rolf
et al., 2021). If one group is smaller than another, naïve modeling may
be more accurate at inferring and predicting things for the majority
group, and may be more likely to be incorrect for minority groups.

In addition to capturing bias and injustice in the world, data col-
lection may introduce unfairness into the system. Sampling strategies
determine who is considered for inclusion in the data. Response or
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submission bias, where some people are more likely to volunteer infor-
mation or respond to requests than others, can also introduce additional
unfairness. Selecting and defining variables is crucial as observations
or proxies need to be valid and unbiased measurements of the target
construct (to avoid measurement bias), and their response needs needs
to be consistent across different groups in a population (measurement
invariance, Steenkamp and Baumgartner, 1998). For example, it wasn’t
until September 2021 that US mortgage lender Fannie Mae opted to use
on-time rental payments as a measure of creditworthiness, in addition
to traditional loan repayment data (Lerner, 2021). Collecting only loan
repayment data excludes individuals who have historically had less need
to borrow or who have religious objections to lending. The selection
of particular data as a marker of creditworthiness therefore excludes
evidence that might be favorable to a borrower.

The problems above can all introduce bias in the data under its
own terms: assuming a set of information goals, the data is biased with
respect to its ability to meet those goals. However, data collection can
also be biased by the perspectives that inform what is being measured
and how, and how the relevant constructs are defined (“When you
measure include the measurer.”, Hammer, 2021). The decisions that
are made in collecting — from defining its initial goals to defining the
variables to record — reflect the perspectives of the people involved
in the process; without broad stakeholder engagement, the data set
may be biased in concept relative to the needs and goals of a subset
of the people it will affect, and without clear documentation of the
perspectives and assumptions that went into its design, these biases may
be undetectable (Hutchinson et al., 2021). For example, it is well-known
that in schools in the US, Black and White students are subject to
disciplinary actions at very different rates (Okonofua and Eberhardt,
2015), and this is at least partly due to the actions of children and youth
being perceived differently by teachers and administrators, conditioned
by race (Okonofua et al., 2016).

Many variables also require a codebook to determine how the variable
is recorded, particularly if it is categorical in nature, and these codebooks
reflect specific perspectives in how observations should be recorded. This
becomes particularly salient with sensitive personal attributes such as
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gender or race; racial categories are often adapted from administrative
data collection efforts, but these categorizations vary across time and
space and are the results of substantial political processes in determining
how to record a fundamentally social construct (Hanna et al., 2020).
Finally, data needs to be collected and interpreted in light of its social
and cultural context to avoid unfairly disregarding local knowledge and
perspectives.

Mitchell et al. (2020, §2.1) provide a statistically-oriented view on
the sources we have discussed so far: societal bias results in deviations
between the “world as it should and could be” and the “world as it
is”, and statistical bias results in “systematic mismatch” between
the world as it is and the collected data and observations, including
both sampling biases and measurement error. Redlining is an example
of societal bias, because it results in people living in different housing
situations than they would if there was no racial discrimination in
housing policy (the world as it should be); a systematic mismatch
between actual housing situations and their records in the data, for
example due to differential reporting, would be a statistical bias.

Machine learning models can also introduce unfairness. Such unfair-
ness may arise from direct use of sensitive attributes (e.g., gender and
race) in the model. Models may learn to discriminate indirectly from
other proxy variables present in the data. The objective functions for
which a model is optimized further encode specific perspectives about
what constitutes a “good” model, sharing the respective challenges in
determining how to define, collect, and encode data.

Unfairness can arise in evaluating a machine learning algorithm
or application in various ways. All of the problems we have discussed
regarding input data apply to evaluation, to the extent that the data
is being used to evaluate the model (and it usually is, at least as an
initial validation step, even when the final evaluation will involve the
results of application deployment). Further, perspectives captured in
the definition of success can skews evaluation outcomes, as success for
some stakeholders does not mean success for all (Barocas et al., 2021).
It is crucial to identify who are the stakeholders of the system, and
determine whose utility is reflected in the evaluation metric(s). This
connects to additional questions on the accountability of the system:
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Who gets to make the decision on who is being served through the
design choices? To whom are they accountable?

For example, if a loan decision model is evaluated on the basis of
historical data from lenders, it will most likely have thorough information
about those individuals to whom loans were given, but little or no
information about those whose loans were denied. Thus, the system can
learn about false positive decisions but not false negatives, magnifying
whatever blind spot caused such errors in the first place (O’Neil, 2017).

Details in evaluation can also make a difference in the system’s
fairness (Barocas et al., 2021). Measuring performance averaged over
all subjects will prioritize performance on the majority group, while
disaggregating and reweighting performance metrics can favor systems
that perform equally well across groups regardless of group size.

Finally, unfairness may be introduced by human response to the
system’s output: humans and algorithms do not necessarily compose
(Srivastava et al., 2019). Model output might influence stakeholders to
respond differently, and their response may in some cases be inversely
correlated with computational fairness. For example, Green and Chen
(2019) found that providing algorithmic risk scores increased racial
disparity in human assessments of risk in a laboratory setting, even if
the scores themselves were racially fair; Albright (2019) found similar
results in a study of actual judges’ decision-making behavior. Other
social factors may skew human response to a system; for example,
community support in assisting loan application and repayment might
skew individual’s response to loan prediction model outcomes.

As we note, unfairness may enter the system at any of these points,
and each requires different interventions and measurements. Further,
bias that is removed at one stage may be re-introduced in another,
such as a model re-learning bias from a proxy variable even though the
data set removed disparate representation, or a human responding in a
biased fashion to unbiased predictions or scores.

3.2 Problems and Concepts

Measuring and mitigating unfairness in a system requires us to identify
several things:
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Distributional harm Harmful distribution of resources or outcomes.
Representational harm Harm internal or external representation.

Individual fairness Similar individuals have similar experience.
Group fairness Different groups have similar experience.

Sensitive attribute Attribute identifying group membership.
Disparate treatment Groups intentionally treated differently.
Disparate impact Groups receive outcomes at different rates.
Disparate mistreatment Groups receive erroneous effects at different rates.

Anti-classification Protected attribute should not play a role in decisions.
Anti-subordination Decision process should actively undo past harm.

Table 3.2: Summary of concepts in algorithmic fairness and harms.

1. Who is experiencing unfairness?

2. How does that unfairness manifest?

3. How is that unfairness determined or measured?

The answers to each of these questions flow from normative principles
that motivate why and how a particular fairness study or intervention
is being undertaken. Being clear about these principles and related
assumptions and goals is crucial to doing coherent work, evaluating its
ability to meet its goals, and assessing the relevance and appropriateness
of those goals to the social problem in question.

As we noted in the introduction of this chapter, there has been
a shift in the field’s discourse from pursuing fairness as a potentially-
universal goal in itself to the perspective we describe of identifying and
addressing specific fairness-related harms. These harms and approaches
for addressing them can be categorized according to a number of con-
cepts, summarized in table 3.2. As with our notation, we draw heavily
from the work of Mitchell et al. (2020) in framing this section, although
our organization is somewhat different.

3.2.1 Distribution and Representation

The first axis we consider is harms of distribution vs. harms of represen-
tation (Crawford, 2017). Distributional harms arise when someone
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is denied a resource or benefit (Crawford, 2017); unfairly denying loans,
for example, to a group of people.

Representational harms arise when the system represents groups
or individuals incorrectly, either in its internal representation (e.g.
word embeddings that encode stereotyped expectations in the latent
embedding space (Bolukbasi et al., 2016)) or in how it represents those
people to others. Systems can cause direct representational harm, by
misrepresenting people to themselves or others, and representational
harms can also cause distributional harms by affecting how the system
makes decisions and allocates resources.

Most literature so far on algorithmic fairness considers distributional
harms; representational fairness is often introduced as a tool for reducing
distributional harms.

3.2.2 Individual Fairness

Another axis of unfairness often considered is individual versus group
fairness. Individual fairness sets the goal that similar individuals
should be treated similarly: given a function that can measure the
similarity of two individuals with respect to a task, such as the ability of
job applicants to perform the duties of a job, individuals with comparable
ability should receive comparable decisions (Dwork et al., 2012). This
fairness concept is grounded in the normative principle that like cases
should be treated alike (Binns, 2020), a notion of justice that traces
back to Aristotle.

Individual fairness is typically operationalized with a task-specific
distance metric ∆in between individuals and another ∆dec between
decisions (or decision distributions, in the case of probabilistic decision
processes). Formally, the decision process is deemed fair if similar
individuals receive similar decisions:

∆inpvi, vjq ď δ ùñ ∆decpδpviq, δpvjqq ď ε

There are several important things to note about about this metric:

• While it constrains decisions on similar instances, it makes no
requirements on dissimilar instances: making the same decision for
highly dissimilar individuals does not violate individual fairness.
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• It depends on the existence of a fair distance function ∆in; if the
distance function is unfair in some way (e.g. job candidates of the
same skill but different races are further apart than candidates
with the same race but differing skill levels), individual fairness
cannot correct for that.

• It effectively requires the decision process δpviq is probabilistic;
in fact, individual fairness is impossible to fully satisfy with non-
probabilistic discrete decisions (Friedler et al., 2016).

The dependence on a fair distance function is particularly important
to consider when identifying the assumptions that underly applications
of individual fairness. Friedler et al. (2021) identify axiomatic assump-
tions for providing different kinds of fairness; one, “what you see is
what you get” (WYSIWYG), is the assumption that available data
(the OFS of vi) is an unbiased representation of underlying reality;
that is, there is no systemic bias or discrimination that affects the
data gathering process. Under the WYSIWYG assumption, individual
fairness is directly applicable: observations vi can be compared with
an applicable distance function, and this suffices to enable the use of
the individual fairness constraint to achieve the goal of treating like
instances alike.

However, if systemic discrimination is present, either due to a gap
between the world’s ideal and current states or biases in the data
gathering process (Mitchell et al., 2020), then we cannot assume that
similarity in the OFS is equivalent to similarity in the CFS, and thus
individual fairness is only treating individuals similarly if they are
similar in the (biased) observation space; it makes no guarantees about
their treatment with respect to their similarity in unobserved construct
space. Friedler et al. (2021) characterized one family of commonly-used
assumptions to address such discrepancies as “we’re all equal” (WAE):
taking as an axiom the idea that different groups are fundamentally the
same with respect to the task, and thus any systematic discrepancy in
observation space (e.g. members of different racial groups tending to
be dissimilar in the OFS) is the result of discrimination and should be
corrected for; Friedler et al. (2021, p. 140) note that the assumption



3.2. Problems and Concepts 51

can be interpreted either as “members of different groups are the same”
or “members of different groups should be treated the same for the
purposes of our task”, and the resulting math is equivalent. The WAE
view is seldom taken in individual fairness literature, but Binns (2020)
argues, and Friedler et al. (2021, p. 142) concur, that this is not a
fundamental limitation of individual fairness, as WAE can be used to
construct a distance function that takes group-based discrimination
into account, for example by performing group-wise normalization of
features.

3.2.3 Group Fairness

Group fairness is concerned with ensuring that different groups
have comparable experiences with the system in some way. The groups
in question are often gender, race, ethnicity, religion, and other group
associations used in anti-discrimination law, but the goals and definitions
of group fairness are not limited to these groups. As noted previously,
group membership is usually formally denoted through a sensitive
attribute ai. Often two groups are considered: a protected group
ai “ İ and a dominant group (sometimes called the unprotected group
or majority group) ai “ Ĳ, and the goal of the system is to ensure that
the protected group is not unfairly (mis)treated.

As with individual fairness, group fairness can flow from either
WYSIWYG or WAE assumptions; it is also possible to conceive of WAE
as a prior instead of an axiom, but this is seldom done explicitly in the
relevant literature.

There are many ways to categorize group fairness constructs; in this
section, we are going to organize them along the lines of legal concepts
that inspired them.

Disparate Treatment

Disparate treatment is when members of different groups are in-
tentionally treated differently (Barocas and Selbst, 2016, §II.A). The
straightforward way for disparate treatment to manifest is as a direct
property of the model, and can be removed by simply not using group
membership as an input to the model.
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Disparate treatment can also arise through the modelling and feature
engineering processes, by selecting features known to correlate with
group membership for the purpose of treating groups differently. When
such intention exists, it makes more sense to address it at a process and
policy level; its statistical effects will be equivalent to disparate impact.

Disparate Impact and WAE

Disparate impact is when different groups have different impact
from the system’s decisions: they experience decisions at different rates.
In algorithmic fairness, this is formalized through statistical parity
measures. Given a sensitive attribute a, statistical parity is satisfied if
decisions are independent of group membership:

Ppδpvq “ 1|aq “ Ppδpvq “ 1q

In the two-group case, this is often defined as parity in outcomes
between the two groups:

Ppδpvq “ 1|a “ İq “ Ppδpvq “ 1|ai “ Ĳq

Statistical parity measures thus reflect a “we’re all equal” assumption
(Friedler et al., 2021); if different groups are fundamentally the same in
their loan qualification, then we expect them to repay loans at the same
rate, and thus they should receive positive decisions at the same rate.

In U.S. anti-discrimination law, the disparate impact doctrine (Baro-
cas and Selbst, 2016) is a test for potential discrimination in regulated
decision-making processes such as employment and housing. It is usually
operationalized via the “four-fifths rule”; a decision-making process δ,
such as a part of the hiring procedure like a strength test, violates dis-
parate impact under this standard if Ppδpvq “ 1|a “ İq ă 0.8Ppδpvq “
1|a “ Ĳq — that is, the protected-group pass rate is less than four-fifths
of the dominant-group pass rate.

Crucially, however, disparate impact is only one part of a broader
scheme for determining whether unlawful discrimination has occurred.
A finding of unlawful discrimination based on disparate impact requires
that (1) disparate impact occurs, and (2) it either does not serve a
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legitimate business purpose, or there would be a less discriminatory
way of achieving that business purpose. This is implemented through a
burden-shifting framework:

1. The plaintiff shows the challenged practice has disparate impact.

2. The defendant shows a legitimate business purpose for the practice.

3. The plaintiff shows a less discriminatory mechanism that would
achieve the business purpose.

There is much subtlety in how these rules are implemented and the
burden of proof at each stage needed in order for the defendent to be
liable for violating anti-discrimination law; Barocas and Selbst (2016)
provide more detail. The key point for our purposes in this monograph,
however, is that statistical parity measures are useful for detecting
where discrimination may be occurring, and they are useful objectives
in situations where “WAE” is the appropriate normative assumption,
but they are often not sufficient evidence of discrimination, particularly
for establishing liability.

Error-Based Constructs and WYSIWYG

The next family of group fairness constructs is based on classification
or prediction error. Crucially, these metrics make a WYSIWYG (“what
you see is what you get”) assumption (Friedler et al., 2021), at least for
the outcome variables yi: they assume recorded outcomes are correct
and unbiased, and the goal is to use these as a reference point for
ensuring that groups are not mistreated. Methods optimizing these
objectives may vary in their assumptions about the bias in vi.

Error parity, sometimes called disparate mistreatment, ensures
different groups do not experience erroneous decisions at different rates,
conditioned on their true outcomes (Zafar et al., 2017). In our lending
example, if FNRİ ą FNRĲ, then the protected group is more likely to be
denied loans that they would pay off. Fair FNR can be operationalized
through an independence constraint:

Ppδpviq “ 0|yi “ 1, aiq “ Ppδpviq “ 0|yi “ 1q
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Similar constraints can be derived for other metrics such as FPR.
Recall parity, sometimes called equality of opportunity, ensures

that members of different groups are equally likely to receive a favorable
positive decision conditioned on positive outcome (Hardt et al., 2016).
Under this objective, the decision process is fair when:

Ppδpviq “ 1|yi “ 1, aiq “ Ppδpviq “ 1|yi “ 1q

A third category of group fairness objectives that rely on outcomes
look at the predictive utility of the decision process. This takes a couple
of flavors; we can look at predictive value parity in the decision
process, and require that decisions for each group have the same positive
predictive value (Chouldechova, 2017):

Ppyi “ 1|δpviq “ 1, aq “ Ppyi “ 1|δpviq “ 1q

We can also define similar constructs on any marginal of the confu-
sion matrix (Mitchell et al., 2020); the metrics in this section are not
an exhaustive list.

We can also look at calibration parity, requiring that the under-
lying scores are equally well-calibrated for each group (Kleinberg et al.,
2017):

Ppyi “ 1|ψpviq, aq “ Ppyi “ 1|ψpviqq

Finally, in settings where the system is learning stochastic decision
policies, such as reinforcement learning and multi-armed bandit sce-
narios, Joseph et al. (2016) and Joseph et al. (2018) have proposed
meritocratic fairness, which prohibits the system from preferring a
less-qualified candidate over a more-qualified one: if yi is a continuous
measure of qualification and yi ě yj , then Ppδpviq “ 1q ě Ppδpvjq “ 1q.
This construct prevents preference inversions, but does not place any
bound on how large the gap in decision probabilities can be; the system
can strongly prefer a mildly more qualified candidate without violating
meritocratic fairness.

In practice, any of these metrics or objectives knowing the outcome
y at the time of decision making. They are useful in training and
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evaluating supervised classification algorithms under the WYSIWYG
assumption for the historical training labels, however.

Error-based metrics have intuitive appeal, because they encode a
notion of fairness that, on its face, seems quite desirable: that if two
people are both qualified for a beneficial decision, their race, gender, or
other group membership should not affect the decision process. They are
similar in that respect to individual fairness, using recorded outcomes as
the definition of “similar”. There are, however, at least three important
limitations for the use of these metrics:

• WYSIWYG is a strong assumption about the accuracy and lack
of bias in training labels; in some cases, this assumption amounts
to assuming away the problem we are trying to solve.

• There are fundamental tradeoffs between them. The Chouldechova-
Kleinberg theorem (Chouldechova, 2017; Kleinberg et al., 2017)
states that it is impossible to simultaneously equalize more than
two different error parity metrics unless the underlying base rates
are equal or the classifier is perfect. Equal FPR, equal FNR, and
equal PPV are all desirable properties, but in the presence of
unequal base rates and imperfect models, they cannot be simulta-
neously achieved. Pleiss et al. (2017) document incompatibilities
between calibration and error-based parity, particularly when base
rates are not equal. Friedler et al. (2021), however, note that the
WAE assumption amounts to assuming the base rates are equal,
so this set of tradeoffs is no longer in effect; this assumption also
often entails biased error in the training and evaluation labels.

• Observed outcomes, for either training or evaluation, are only
available from a subset of the data (Ensign et al., 2018). In our
lending example, repayment data is only available for loans that
have been issued — if the bank does not make a loan, they cannot
observe if it is repaid. This is very connected to the dynamic in
information access that we only obtain feedback on results that
are shown to users.
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3.2.4 Awareness, Treatment, and Impact

An important early result in algorithmic fairness (Dwork et al., 2012)
is that “fairness through unawareness” — that is, trying to achieve
fairness by completely ignoring protected group status — does not work.
Group identity often correlates with other variables which can serve
as proxies for group membership (Feldman et al., 2015); for example,
different education or income levels between groups due to societal
discrimination. Ignoring protected group membership can therefore
result in models that are unfair under any of a number of definitions.
Individual fairness addresses this through the notion of similarity with
respect to task (Dwork et al., 2012), which may need to compensate
for group differences (Binns, 2020). Statistical parity addresses this
through a WAE assumption, resulting in metrics that require groups to
experience positive decisions at similar rates. Error parity addresses this
through enforcing group parity in decision (in)accuracy, which often
requires group labels at least in the evaluation — if not the training —
stage of model-building.

Lipton et al. (2018) address the general question of whether disparate
treatment — explicitly treating members of different groups differently
— is necessary in order to reduce disparate impact, and argue that
disparate treatment is more effective and easier to reason about than
more indirect fairness interventions aimed at reducing disparate impact.

3.2.5 Motivations and Theories

In addition to different assumptions, and related to different specific
goals, fairness objectives can also flow from different fundamental philoso-
phies about the purpose and function of fairness. In U.S. legal theory,
there are — broadly speaking — two different motivations for anti-
discrimination law (Barocas and Selbst, 2016; Xiang and Raji, 2019).
Under anti-classification, the goal of anti-discrimination is to remove
the protected characteristic from the decision process: race is not a
factor in whether or not someone gets a job or a loan. The theory of
anti-subordination, however, says that this does not go far enough,
because the effects of past discrimination carry forward in time. Under
this theory, anti-discrimination law and practice need to actively work
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to reverse the effects of past discrimination and oppression. Both of
these theories can be found motivating fairness literature; sometimes
they will converge to some of the same technical constructs, at least
as an intermediate step, but they lead to different end goals and some-
times different rhetoric. The distinction in rhetoric we discussed at the
beginning of chapter 3 is related to this distinction in policy motivations.

3.3 Mitigation Methods

Just as bias can enter the system at different stages in the pipeline
(fig. 3.1), mitigation techniques can also be applied at different stages.
In this section we briefly outline some approaches from the existing
machine learning literature; more details can be found in fair machine
learning survey papers (Mehrabi et al., 2019; Caton and Haas, 2020).

Great care is needed in selecting and evaluating sites of intervention
for improving the equity of a system. Different types and sources of
fairness may be best addressed by interventions at different points,
but not necessarily at the source. Further, we cannot assume that
fairness composes (e.g. improving the fairness in one stage does not
guarantee that downstream stages in the decision-making process do not
re-introduce unfairness or introduce new kinds of unfairness); Dwork
and Ilvento (2018) argue it is necessary to assess the fairness of the
entire system in the context of its actual use and application.

3.3.1 Preprocessing

One intervention site is to remove biases from the input data. Sim-
ply removing sensitive attributes does not necessarily lead to a non-
discriminatory model outcome, as from other features in the dataset
might encode information for inferring the sensitive attribute (Dwork
et al., 2012; Feldman et al., 2015).

Kamiran and Calders, 2012 propose four different methods for de-
biasing data:

• Suppressing sensitive attributes or attributes correlated to the
sensitive attributes; this can reduce discrimination in downstream
tasks in some cases.
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• “Massaging” the data by altering class labels from negative to
positive for sensitive groups and vice versa until discrimination
is minimized; this extends another technique by Kamiran and
Calders (2009).

• Re-weighting the data by carefully assigning weights to certain
inputs to reduce discrimination.

• Stratified sampling strategies to repeat or skip samples to reduce
discrimination selectively.

Feldman et al. (2015) propose a repair procedure for data sets by
altering observed features (x) in the data set to eliminate their utility
for predicting sensitive attributes (a). This is a purely correlational or
predictive approach, that removes any correlation between sensitive and
insensitive attributes regardless of potential causal connections.

Salimi et al., 2019 introduce the idea of interventional fairness,
using causal directed acyclic graphs to represent functional interactions
between variables; they then divide features into admissible and inad-
missible, where admissible features are those that justifiably influence a
decision outcome. They then define fairness as when all outcomes are
causally independent for any combination in the superset of inadmis-
sible variables, and require classifiers to be trained on data sets that
satisfy this notion of conditional independence. They finally repair the
database by inserting and deleting certain tuples to ensure it satisfies
the conditional independence constraint.

Beyond bias arising from the initial data set, feedback loops can feed
model bias back into the data set. For example, in predictive policing,
the only feedback the system receive are influenced by the decision
already made by the system, such as which neighborhood to patrol,
and crime reported in those neighborhoods only. These feedback loops
can result in substantially increased discrimination. Ensign et al. (2018)
document this phenomenon and provide a mitigation strategy that
selectively filters the feedback on the model decisions.
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3.3.2 Representation Learning

Many machine learning models operate by learning representations that
can be used for (possibly multiple) downstream tasks. Imposing fairness
constraints on the representations may lead to non-discriminatory out-
put in the downstream tasks (Zemel et al., 2013; Madras et al., 2018;
Lahoti et al., 2019). The key idea in fair representation learning is to,
as Zemel et al. put it, “lose any information that can identify whether
the person belongs to the protected subgroup, while retaining as much
other information as possible”.

Representational learning maps the data distribution to a latent
distribution where the latent distribution satisfies some desired proper-
ties. Fair representation learning can be formulated as multi-objective
optimization problem, simultaneously minimizing information loss and
removing information related to sensitive attributes. Several approaches
include probabilistic mapping of the input data to prototypes (Zemel
et al., 2013), matrix transformation (Lahoti et al., 2019), and fairness
as adversarial objectives (Madras et al., 2018; Feng et al., 2019; Beutel
et al., 2019)

3.3.3 Fairness-Aware Decision Models

We can also alter the objectives of the decision model itself to include
fairness. This typically takes the form of incorporating one or more of the
objectives described in section 3.2 into the model’s objectives or training
process; they therefore face the tradeoffs and incompatibilities inher-
ent to the various constructs and metrics. One common approach ins
regularization: incorporating one or more fairness objectives penalty
terms to the loss function to discourage unfair models. In many cases,
existing loss functions are enhanced with regularization terms in order
to strike a balance between non-discrimination and accuracy on the
training data (Chakraborty et al., 2017).

In constrained optimization approaches, fairness is formulated as
a constraint on parts of the confusion matrix at training time (Mitchell
et al., 2020; Caton and Haas, 2020). Both regularization approaches
and constrained optimization approaches can be unstable, i.e., small
changes in dataset might affect the outcome Friedler et al., 2019.
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Adversarial learning can also be applied with an adversarial model
attempting to identify unfairness in the primary model’s outputs (Celis
and Keswani, 2019). This can also be formulated as a multi-constrained
optimization problem (Caton and Haas, 2020). Xu et al. (2019) present
a more complex adversarial learning approach that attempts to model
causal factors with twin generators modeling observed and fair versions
of the observed data, with discriminators separating generated from
real data and separating the protected and unprotected groups.

For algorithm-in-the loop decision making, Noriega-Campero et al.,
2019 propose that decision makers can adaptively collect information to
ensure fairness for groups and individuals as necessary. This involves an
iterative process between modeling and data gathering or preprocessing,
so it is not strictly a model approach; it does, however, implement
the observation of Chen et al. (2018) that different causes or types of
unfairness may need different interventions, and some can be addressed
by collecting more or less data.

3.3.4 Postprocessing

Post-hoc fairness leaves the data and model alone, but post-processes the
model outputs in order to provide fairness. One technique is through
thresholding, i.e, using different decision boundaries for different
groups to ensure non-discriminatory outcome under some definition
(Kamiran and Calders, 2012; Kleinberg et al., 2018). We treat the post-
processing technique of reranking in more detail later in this monograph,
as it is an important tool for fairness-aware information access.

3.4 Wrapping Up

The algorithmic fairness literature has identified a number of different
constructs for measuring and reducing unfairness and discrimination in
machine learning systems. These constructs are not all conceptually or
mathematically compatible; different ones flow from different ethical
goals and assumptions about the data, its social context, and the harms
to be prevented or ameliorated. For any given application, it is crucial to
clearly and precisely describe the problems at play from ethical and/or
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legal perspectives, and to select or derive constructs that operationalize a
suitable set of objectives. We further cannot assume that any particular
fairness objective composes with other parts of the system, or that any
particular solution translates cleanly to other problem settings (Selbst
et al., 2019). Fairness needs to be defined, assessed, and ensured in a
specific problem setting in light of its full sociotechnical context (Dwork
and Ilvento, 2018).

We have only been able to provide a very brief introduction to
algorithmic fairness in this chapter. We refer readers to Barocas and
Selbst (2016), Selbst et al. (2019), Mitchell et al. (2020), Dwork and
Ilvento (2018), and Suresh and Guttag (2019) for further study.



4
The Problem Space

Information access systems introduce some fundamental twists to prob-
lems of fairness and discrimination, making it difficult to directly apply
the fairness concepts for other machine learning settings surveyed in
chapter 3. These difficulties arise from a number of differences, includ-
ing the addition of multiple classes of stakeholders (Burke, 2017), the
rivalrous nature of allocating retrieval opportunities (Introna and Nis-
senbaum, 2000; Azzopardi and Vinay, 2008; Biega et al., 2018; Diaz et al.,
2020), and the immediacy of the interactive feedback loop (Chaney et al.,
2018; Khenissi et al., 2020); classification-oriented fairness definitions
are not necessarily well-suited to assessing these situations.

In this chapter we examine, from several different perspectives, the
key considerations involved in applying fairness concepts to informa-
tion access problems. This starts with discussing how the classification
fairness constructs described in chapter 3 break down when applied to
information access. We then discuss unique types of harms accruing
in such systems, the potential for fairness concerns across multiple
stakeholders, the variety of fairness constructs potentially at work, and
the connections between these constructs and the broader space of in-
formation access research and fairness, accountability, and transparency

62
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(FAccT) research. We note that not every harm we discuss here has been
documented in the wild; we provide citations for as many as possible,
but ensuring that information access is equitable requires researchers
and developers to proactively engage with possible harms, not only the
ones already known. The ACM Code of Ethics (ACM Council, 2018,
§1.2) states that “avoiding harm begins with careful consideration of
potential impacts on all those affected by decisions”, and it is our goal
in this chapter to provide a framework to guide that consideration for
fairness-related harms information access.

Fairness is also not a cleanly-defined set of problems with hard
boundaries, but rather a lens that encompasses a range of concerns
or (potential) harms, as we noted in chapter 3. Several problems that
information access researchers have long considered can be viewed as
fairness problems; for example, work on popularity bias in recommender
systems (Celma and Cano, 2008; Zhao et al., 2013; Cañamares and
Castells, 2018) has the effect of trying to ensure that the system is fair
to less-popular items. There are also many problems, such as incomplete
data, that are general problems for information access but take on a
fairness dimension when data is missing in a way that disproportionately
affects particular people or groups. We take an expansive view of
potential fairness problems in information access, with the aim of
promoting a wide range of research and development that identifies
and addresses inequity and injustice in information systems and their
contexts.

The taxonomy we present in this chapter is not hierarchical or
orthogonal, but is rather a set of overlapping lenses or facets through
which fair information access may be viewed. The linear nature of
writing forces us to impose a hierarchical structure on our treatment
of the literature, but any classification of such a contestable problem
space is necessarily imprecise and imperfect. We believe, however, that
this set of facets is a useful mechanism for understanding the existing
literature and for positioning new developments in the broader problem
space. Table 4.1 summarizes the dimensions we consider, which we will
treat in the following sections, after first contrasting information access
fairness with the traditional classifier fairness discussed in chapter 3.
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Table 4.1: Summary of dimensions for describing information access harms with
pointers to relevant sections where applicable.

Category of harm
Representational harm 4.4.1, 6.1
Distributional harm 5.4, 6.2

Stakeholder group 4.3
Consumers 4.3.1, 5
Providers 4.3.2, 6
Subjects 4.3.3, 6.4
Platform or system
Multiple groups 4.3.5

Specific types of bias harms
Direct misrepresentation 4.4.1
Unrepresentative list composition 4.4.2, 6.1
Unfair utility 4.4.3, 5.2, 6.2

Time scale
Point-in-time most sections
Evolving over time 4.6, 7

Sources of bias 4.7
Imbalanced user data 5.2
Bias in user activity
Bias in user modeling
Bias in content production
Bias in item modeling
Bias in retrieval and ranking models
Bias in evaluation methods

Intervention points
Data pre-processing
Adjusting models 5.4, 6.1.3, 6.2.3
Re-ranking 5.4, 6.1.3, 6.2.3
Software process 5.4
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Table 4.2: Comparison between information access fairness and the setting typically
assumed in classification-oriented fairness work.

Classification Information access
Independent, separate decisions Ranked results, item decisions

affect other items

Subjects receive one decision Items subject to repeated decisions
over time; users get multiple
results

Decisions independent of user Decisions personalized to user

Target outcome construct
independent of user

Target outcome (relevance)
subjective to user

Data subjects need fair experience Multiple stakeholder classes may
need fair experience

4.1 What Breaks in Information Access?

Unfortunately, the general algorithmic fairness constructs from chapter 3,
developed primarily in the context of classification for decision-making,
do not apply in a straightforward manner to information access for
several reasons. In many cases, this is because information access vi-
olates key assumptions of the existing classification fairness methods,
particularly the assumption identified by Mitchell et al. (2020) that
the system makes and evaluates its decisions separately, simultaneously,
and symmetrically. In that literature, a classifier is intended to support
binary decisions, such as granting or denying a loan; we can try to
translate this to information access by saying that the information
access system is making decisions about whether and where to display
an item in response to an information request. Information access has
several significant differences, summarized in table 4.2.

First, decisions are not independent, so they cannot be made
or evaluated separately. Information access systems typically rank their
results: placing one item at the first position in a result list means no
other document can occupy that position in that ranking. In any given
news result list, only one article will appear in first position. Even if
individual items’ utility estimates are independent of each other, they
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are ultimately resolved into a single ranking to present in response to
a user’s information need. This ranking may be multi-dimensional, as
in a system that arranges rows or carousels of articles, but there is
still an ordering and limited opportunity for an article to be in the
highest-attention position.

Further, this ranking (or sometimes a set) can be produced in non-
obvious ways that depend on more than just relevance. For example,
the principle of maximal marginal relevance (MMR; Carbonell and
Goldstein, 1998) is used to diversify a result list and make it responsive
to a range of possible interpretations of a query. Under MMR, once
an item is placed in the first position, a second document that is very
similar to the first — and just as useful — may lose the second-place slot
in favor of a document that brings more diversity to the crucial early
positions of the ranking. That is, the utility of an item to an information
need is dependent. Continuing the news example, once an article has
been selected for the first position and its author given priority for
potential readership, an MMR approach to topic diversification would
likely pick an article on a different story for the second position; so
not only does the first-position allocation exclude other authors from
that position, it excludes other authors covering the same story from
subsequent positions in the ranking as well. We can model result list
positions as subtractable or rivalrous goods that are allocated to different
documents (and their providers), but this does not immediately resolve
the problem; it simply identifies it.

Second, decisions are repeated over time, a violation of the
simultaneous evaluation requirement. Most existing fairness constructs
(with the notable exception of literature on fair bandits or fair rein-
forcement learning) assume that all decisions are made at a single point
in time, and do not attempt to account for the system learning and
adapting future possible decisions. Some recent work, such as that of
D’Amour et al. (2020), addresses the need for dynamic considerations
of fairness but this has not yet made its way into widely-used fairness
definitions. In addition, the same items may be considered for possible
ranking multiple times as users interact with the system. If an item
is not given a good position in response to the current information
request, that does not preclude it from being given a good position
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in the next result set. These changes can come because it is more rel-
evant to the next query, user, and/or context; because the system is
engineered to apply some randomness to result rankings even when a
query is repeated (Diaz et al., 2020; Garca-Soriano and Bonchi, 2021);
because the system has learned more about its relevance through user
interaction (Glowacka, 2019); or some combination of all these. The
system may put one news article at the top of a user’s home page, and
a different article for a different user or even for the same user’s next
visit. Thus, we can speak of fairness in expectation based on a system’s
properties (Diaz et al., 2020), or amortized over multiple information
requests and results (Biega et al., 2018). This deviation from the stan-
dard classification fairness setting provides significant opportunity to
overcome the limitations of non-independent decisions, by providing
more opportunity for documents to made visible, but it changes the
analysis and design of approaches to ensuring fairness.

Third, decisions are personalized to users. Returning to the
lending example, a classification tool that estimates a potential bor-
rower’s risk of default should not return different risk scores or rec-
ommended decisions based on which loan officer is currently using the
system. Information access systems, however, are often personalized
(Liu et al., 2020). This is especially apparent for recommender systems,
where most of the value proposition arises from modeling users’ partic-
ular tastes and identifying products that match them, but many search
engines also personalize to their users, as different users have different
information needs (e.g. a programmer and a herpetologist likely have
different primary interests when searching for “python”) and different
preferences for information sources to address a particular need. The
global implicit aspects of the information need associated with a user
mean that two different users with the same explicit dimensions to their
need may well be seeking different items. This applies to many of our
examples from section 1.5; news platforms will tailor news recommenda-
tions to the user’s interests, professional networking platforms will look
for job listings that match a candidate’s interests; and music services
tailor recommendations and playlists to the user’s tastes. In practice,
personalization relates to repeated decision-making, as we can return
different documents to different users, but has some of its own distinct
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implications as well, such as the possibly of unfairness in representations
of either user preferences or item characteristics.

Fourth, outcomes are subjective. While there is a great deal
of subjectivity in framing problems and measuring outcomes, typical
fairness work assumes an environment in which true outcomes are, in
some sense, knowable, at least at some future time. It is assumed that
a loan applicant will or will not repay the loan, and this repayment is
independent of the bank employee evaluating their application (although
it may, in practice, be affected by lender practices such as payment
reminders and late payment policies). In many information access
contexts, however, the utility of an item usually has at least some
degree of subjectivity to it: different users may disagree on the relevance
of a document to a query, different users have different preferences for
songs or appraisal of their quality, and so on. The goal of the system in
the ideal is not to model some external, objective notion of utility, but
to model the relevance of the item to a particular user, in a particular
context, with a particular query. The same item may need to receive
different scores or ranking decisions in response to different requests
either from different users or the same user in different contexts.

Fifth, multiple stakeholders have fairness concerns. While
most problems have multiple classes of stakeholders — the bank wants
to make a net profit, the loan applicant wants a loan, and the community
has an interest in residents having access to credit while maintaining
low incidence of foreclosure-induced homelessness — the applications
considered in much work on algorithmic fairness have a clear stakeholder
class for whom fairness is taken to be important. We attempt to ensure
that lending is fair to loan applicants, but do not spend effort on ideas of
fairness to banks; likewise job applicants and the employer. Information
access, however, has multiple stakeholders with salient fairness concerns.
Two particular ones, which we introduced in chapter 1 and discuss in
more detail in section 4.3, are consumers (the users of the system who
consume information or products) and providers (people or entities
who create or provide the items consumed). Research (and system
deployment) accounting for fairness in information access needs to
identify one or more stakeholder groups for whom it will consider
fairness, and to clearly document this decision and its implications. The
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exact position and fairness requirements of individuals may also change
from product to product, even within the same domain or platform;
for example, prospective employees are consumers and employers are
providers in a recommender for job listings, but the roles are reversed for
a job candidate search tool to for use by recruiters. The same platform
may well provide both of these types of recommendations.

These differences — and likely others — mean that it is important
to study fairness in information access as a distinct problem in its
own right. The extensive work to date on fairness in other algorithmic
settings has much to say that can and should inform this work, but we
cannot expect methods or metrics from classifier fairness to directly
and immediately apply to information access without adaptation to the
particularities of information access problems.

Machine learning fairness has much to teach us about how to
frame, understand, and measure fairness, but the details often
do not directly translate to information access problems. Naïve
application of classifier fairness constructs to information access
often breaks down.

4.2 Kinds of Harms in Information Access

There are a number of different ways an information access system can
harm one or more of its stakeholders, particularly arising from its role
as a mediator of users’ access to information that may or may not meet
their needs.

An unfair distribution of performance — specifically one that favors
over-represented populations — can systematically hurt the retention
of entire subpopulations of users. An information access system that
optimizes for mean performance can improve mean performance met-
rics (e.g. user satisfaction), at the expense of under-performance on
under-represented groups, which are dominated by over-represented
groups; metrics may also improve through the attrition of users from an
under-represented group. In simulation experiments, Hashimoto et al.
(2018) demonstrate that traditional empirical risk minimization results
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precisely in these dynamics. In the context of two-sided recommendation,
attrition may occur from content consumers or providers, potentially
compounding any effects over time (i.e. attrition of providers can impact
the size of the catalog and performance for consumers).

Increasingly, especially in protected domains like housing (HUD,
2020) and employment (Raghavan et al., 2020; Sánchez-Monedero et
al., 2020), legal human rights regulation is being expanded to include
algorithmic decision-making, like information access (Wyden, 2019;
Thune, 2019). As such, techniques for auditing and addressing systems
for unfairness will become important from a legal perspective.

Journalistic investigation provides an alternative way in which algo-
rithmic unfairness may be surfaced (Diakopoulos, 2015; Angwin et al.,
2016; Pelly, 2018). These investigations can provoke regulation and hurt
user perception and trust, potentially leading to attrition.

Besides the utilitarian effects on the information access provider,
harms include a variety of social externalities. Metrics such as user
satisfaction or retention can ignore the broader impact of mediating
information, especially news, which can affect social and political in-
stitutions. While content consumers can be affected by mediation, the
livelihood of content producers can particularly be at the whim of algo-
rithmic decision-making, incentivizing classes of content more amenable
to distribution than under-represented content.

These harms suggest that information access system designers should
understand the broader implications of the technology they produce.
Indeed, early in the development of information retrieval, Belkin and
Robertson (1976) noted the ethical responsibility of information retrieval
researchers to avoid political or economic manipulation. Librarianship
provides a professional discipline close to those designing information
access systems and a code of ethics that ensures “equitable services are
provided for everyone whatever their age, citizenship, political belief,
physical or mental ability, gender identity, heritage, education, income,
immigration and asylum-seeking status, marital status, origin, race,
religion or sexual orientation” (IFLA Governing Board, 2012).
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There are multiple ethical, legal, and business reasons why infor-
mation access system developers should consider fairness in their
system design and evaluation.

4.3 Fair for Who?

While most of the history of information access research has concentrated
on optimizing system performance for user outcomes (see, for example,
the many rounds of TREC providing evaluations of IR systems’ ability
to retrieve relevant results, and the standard practice of assessing
predictive or top-N accuracy in recommender systems), there has been
a growing acceptance in recent years that, in some contexts, information
access systems serve multiple goals and possibly multiple parties, each of
which is affected by the system’s results and behavior. The integration
of the perspectives of multiple parties into recommendation generation
and evaluation is the goal underlying the sub-field of multistakeholder
recommendation (Abdollahpouri et al., 2020; Mehrotra et al., 2018).

Many e-commerce sites operate as multisided platforms, a busi-
ness model analyzed in the economics literature by Rochet and Tirole
(2003) and Evans et al. (2011). One important finding is that different
applications require different distributions of utility. In many multisided
platforms, there is a ‘subsidy side’ of the transaction where one set of
parties uses the platform at a reduced cost or no cost. For example, users
of the OpenTable restaurant reservation service do not directly pay for
reservations; instead, restaurants pay for each reservation made (Evans
and Schmalensee, 2016).

In information access as well, the outcomes of the system may be
biased towards one group of parties for similar reasons. In addition, the
need for personalization may vary across systems and between stakehold-
ers. For example, in an e-commerce site, product suppliers will usually
not care about the characteristics of consumers: as long as products are
surfaced to likely buyers — either through recommendations or search
results — they will be satisfied with the behavior of the system. Online
advertising is different: typically an ad campaign is targeted towards a
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particular audience, so a recommended ad placement is only considered
successful if the ad matches the user’s interests, to the extent they are
known, and the user matches the target audience towards which the
campaign is oriented.

Any system may have a multiplicity of stakeholders who are impacted
by its decisions. In the case of fairness, the most salient ones will often
be those noted above: consumers and providers. It may well be the
case that these stakeholders individually have no interest in fairness;
they may be primarily interested in the best outcomes for themselves.
Fairness is usually a constraint that the system creators impose on
outcomes, either to satisfy their own organizational mission or to meet
the demands of yet other less-proximal stakeholders, such as government
regulators or interest groups. A few counterexamples do exist in the
form of technologies to allow stakeholders to prevent certain kinds of
unfairness even if the platform owner is accepting of unfair outcomes
(Nasr and Tschantz, 2020; Kulynych et al., 2020).

4.3.1 Consumers

Fairness towards consumer stakeholders may be grounded in different
normative concerns: a goal of beneficence and the avoidance of various
types of harms; a basic sense that the metric of system performance
should include the broad distribution of its benefits; or, a more practical
concern that unsatisfied users may go elsewhere.

We can characterize consumer fairness in various ways. The most
straightforward is through quality of service, particularly in terms of
error, user satisfaction proxies, or other performance metrics (section 5.2;
Mehrotra et al., 2017; Ekstrand et al., 2018b). If particular classes of
users less utility than others, whether measured in terms of prediction
accuracy, ranking accuracy, or other measures, then we may say that
the system is treating those users unfairly.

A system may also be unfair if its output is discriminatory in the
content provided to different groups. For example, it is well-documented
that real estate agents in the US have regularly steered minority home
buyers to a limited set of neighborhoods; such incidents prompted the US
Fair Housing Act, which explicitly disallows such activities (Rothstein,
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2017). Not to run afoul of such laws, a real estate recommender would
need to be sure that its lists of recommended properties contained
a fair distribution of opportunities regardless of the buyer’s minority
status. Thus, fairness may involve the specific content provided rather
than differential performance on some error metric. This issue can
arise in many other domains as well, such as ensuring job seekers of
different genders or ethnicities have access to comparable job listings;
recommending lower-paying jobs to some groups of users than others
would violate this principle, and in some jurisdictions may be illegal
(case law is not yet settled on this point). This phenomenon has been
studied, for example, in Facebook’s ad targeting platform (Ali et al.,
2019).

Finally, groups of consumers may be impacted if they have to incur
disproportionate costs in order to use a system. Such costs might come
in the form of information disclosure or effort. For example, a user with
a disability may find they have to set up specific filtering rules to get the
recommender system to provide acceptable hotel room recommendations
and a able-bodied user does not, in spite of having provided the system
with a similar amount of preferences or ratings. Systems may perform
better if users opt to share more data, or under-perform for users
who are on low-quality connections and cannot provide as much data
about their information needs (will note here that it is not necessarily
possible to fix every potential fairness problem!). It is also not clear
that privacy-preserving recommender systems impose equal accuracy
or quality costs on different groups of users (Ekstrand et al., 2018a;
Bagdasaryan et al., 2019). Users who experience marginalization may
also experience the tracking of activity and the generation of profiles
that comes with personalized recommendation as considerably more
threatening than others (Browne, 2015; Burke and Burke, 2019).

These concepts of fair treatment do not necessarily correlate. A
system may look fair in that different groups of users receive compa-
rable quality of service as measured by system effectiveness metrics,
but perform poorly at presenting protected group users with the “best”
inventory. One specific way this can manifest is when using clicks to
measure information satisfaction: users click on results presented to
them, so the system may appear to be delivering satisfactory results,
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when in fact one user would prefer to receive the results another user
is receiving. Thus, a system designer looking to protect consumer fair-
ness will need to think carefully about the types of harms user might
experience and how to detect and measure them.

4.3.2 Providers

There is a fundamental asymmetry between the various stakeholders
participating in an information access system. Consumers come to the
system to find information and are thus active in the information- or
product-seeking process (‘lean back’ recommendation experiences aside).
They may be able to get multiple sets of results if they wish. Content
providers, on the other hand, have a more passive role: their items are
presented when and if appropriate users arrive, and they typically have
little control over the recommendation or retrieval function. Despite
this asymmetry, fairness concerns can arise in similar ways. Different
groups may experience greater error when predictions of their items are
made. For example, the system may systematically under-estimate user
preference for books by minority authors (Yao and Huang, 2017).

More often, however, the concern will be about the exposure of
items in results. This notion of provider fairness is concerned with
how different providers, either individually or as members of protected
groups, have their items appear (or not) in the rankings produced by
a particular system. For example, in a search or recommendation tool
to help recruiters find candidates for an opening, we want to ensure
that the candidate lists it produces treat protected groups fairly (Geyik
et al., 2019). The personalized nature of recommendation (and many
search systems), the fact that individual result lists are limited in size,
and the rank-ordered nature of most information access systems means
that we can only hope to achieve this kind of fairness over time and
across multiple user visits (Biega et al., 2018; Diaz et al., 2020). In
some cases, a provider’s items might be a poor fit to the users of a
particular system. Consider a pianist on a job site whose primary user
base is carpenters and electricians: there might not be many recruiters
for whom such an applicant is relevant, and presenting their profile is
likely unhelpful. All of these considerations complicate the problem of
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measuring and ensuring provider fairness.
As we have used it so far, the term “provider” is a simplification

of what can be quite complex systems of production and distribution
that produce the documents or items in a system’s inventory. The
area of popular music is a good example, where the beneficiaries of
the recommendation of a music track can be quite diverse, from the
artist whose name is on the track, to the other musicians involved in
the recording, the songwriter(s), the producer, the record label, etc.
Fairness may not mean quite the same thing to each of these individuals;
unfortunately, little data is currently available on how different provider
groups perceive the fairness of recommender and information retrieval
systems specifically. In one recent result, Ferraro et al. (2021) report
on interviews with musicians and their perceptions of fairness in music
streaming platforms, with special attention on female artists. However,
most literature focuses on the perceptions of recommendation consumers,
and filling the gap to understand providers’ experiences is an area in
need of significant study.

There is significant conceptual overlap between provider-fairness
and the diversity of search and recommendation results (Ziegler et al.,
2005; Steck, 2018). However, when diversity is invoked as a desirable
property of an information access system, it is usually in the service of
some user-oriented goal. For example, in information retrieval, query
aspect diversity can compensate for the fact that the system may have
an incomplete understanding of an ambiguous query, and covering
multiple possible aspects increases the chances that one of them is
correct. Fairness as a social justice concern seeks varied outputs for
completely different reasons.

Provider fairness in this sense also has a strong connection to ideas
of fair allocation from welfare economics (Moulin, 2004; Thomson, 2016).
The resource at issue is the opportunity for a provider’s item to be
made visible to a user, and the question is how to allocate that resource
among various providers and what are appropriate desiderata. This is a
cornerstone topic in social choice and has found practical application in
a number of areas including allocating courses in schools (Budish and
Cantillon, 2012), papers to reviewers (Lian et al., 2018), and numerous
other settings (Roth, 2015; Aziz, 2019).
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4.3.3 Subjects

Retrieved items can sometimes themselves be about individuals, which
we call information subjects. A well-known example arises in image
search and recommendation: in many systems, image searches for terms
like “CEO” turn up results that over-represent white men (Metaxa et
al., 2021). Female and non-white information subjects are not directly
materially disadvantaged, but the results give a false impression that
leads to the perpetuation of stereotypes (Noble, 2018) and possibly
associated loss of opportunity. Karako and Manggala, 2018 examine
this phenomenon and provide methods to address it, with a running
example of seeking to provide a set of workout images that broadly
represent the population. Similarly, news recommendation may fail to
give balanced coverage of issues affecting different groups, such as rural
vs urban residents.

Another example of possible subject unfairness arises in medical
information access. If the studies returned in response to a query for
current research on a medical condition a doctor is treating do not report
on experiments whose subjects are not representative of the population
— or particularly do not include people sharing the patient’s medically-
relevant characteristics — information may be missing for providing the
best outcomes for the patient. We are not aware of significant research
on this particular potential problem, but proactive study of information
access equity requires that we consider it.

Technically, subject fairness (being fair to information subjects) has
a lot in common with both provider fairness and diversity. In each case,
it is the items over which representation is sought. However, in seeking
subject fairness, it may be even more important that individual lists be
diverse, as the goal of diverse representation is not necessarily satisfied
by alternating between diverse and and non-diverse lists, something
that might be acceptable in a provider fairness setting.

4.3.4 Side Stakeholders

The concept of multistakeholder recommendation (Abdollahpouri et
al., 2020) includes many stakeholders beyond those we have discussed,
many of whom may have fairness concerns that a system should address.
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Indeed, in some settings, regulatory agencies may be the most important
stakeholders for deciding the minimum legal standards with respect
to fairness and / or non-discrimination that a system must meet. In
other cases, the structure of a platform entails the participation of
stakeholders who are neither consumers nor providers, but are still
impacted by specific parameters of transactions on the platform.

For example, consider a food delivery platform such as UberEats1

discussed by Abdollahpouri (2020). This platform uses recommendations
to match consumers with restaurants where they might order food to
be delivered. The deliveries are made by Uber’s drivers. There may
be fairness concerns relative to the consumers or providers here, but
there may also be fairness concerns over the set of drivers. These
individuals do not participate in the recommendation interaction but
the recommendations may impact them. For example, a goal might be
to ensure that protected groups among the driver population do not
receive fewer orders than others or do not receive a disproportionate
number of difficult and/or low-tip jobs.

Another example arises in vehicle routing, which can be viewed
as a kind of information access system where the items are routes or
route segments. The routing systems built in to mapping platforms
such as Google Maps and Waze allow users to build routes for a variety
of objectives, including “beauty” and avoiding heavily-traveled routes.
These systems can have the effect, however, of increasing traffic on
side streets and through residential neighborhoods; residents have a
significant stake in these kinds of changes to traffic patterns (Johnson
et al., 2017; Fisher, 2022).

There has been comparatively little published work to date that
considers such “side stakeholders” who are indirectly impacted by infor-
mation access, but it is an important direction for future research.

4.3.5 Joint Fairness

So far, we have only considered each group of stakeholders in isolation.
This is the starting point for much machine learning fairness research,
but it is a simplification. In practical settings, multiple groups may

1http://www.ubereats.com/

http://www.ubereats.com/
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experience harms and benefits through the actions of an information
access system and therefore multiple simultaneous concerns may arise
(Mehrotra et al., 2018).

Information access systems are multisided platforms as noted above
and therefore it is possible that the consumers of results and those
provider side may each have fairness concerns. For example, consider a
recommender system for rental apartment listings. Fairness concerns
with respect to renters are well-established in housing anti-discrimination
law; a system should not discriminate in the types of listings it provides
on the basis of protected attributes like ethnicity or religion. But at the
same time, there could be concerns relative to landlords. Hypothetically,
if a system were found to be steering potential tenants with poor credit
histories to properties owned by minority landlords and better prospects
to other landlords, this would also be discriminatory.

Multiple fairness concerns can also arise on a single side of the infor-
mation access interaction when there are multiple groups to consider.
For example, a search engine may misrepresent both women and ethnic
minorities in the results from image searches. The idea of fairness among
multiple protected groups has seen some initial exploration under the la-
bel “subgroup fairness” (Kearns et al., 2017; Kearns et al., 2019; Foulds
et al., 2020), but there is still much more to do. In particular, existing
work as yet does not take into account the particular, compounded,
challenges that may be encountered by individuals at the intersection
of multiple protected categories (Cho et al., 2013).

4.3.6 Cross-Group Harms

In addition to unfairness for particular stakeholder groups directly
harming that group’s members, unfairness for one group may also harm
other groups.

If a system is provider- or subject-unfair, it may provide consumers
with skewed perceptions of the space of content providers or subjects
(Noble, 2018). A system that under-exposes job candidates from racial
minorities may lead its users to believe such candidates are less common
than they actually are. It may also make it difficult for consumers to
find content they particularly like, because such content is created by
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providers who are not well-represented by the system.
If a system is consumer-unfair, it may under-serve — and thereby

discourage — a provider’s primary audience, making it difficult for that
provider’s content to find an audience.

Measuring and countering unfairness in an information access
system requires clearly identifying who is being considered in a
particular evaluation or intervention. Different groups have differ-
ent concerns that will give rise to different metrics and techniques.

4.4 Fair How?

Another way of understanding fair information access is to look at how
different participants in the system may experience or be harmed by
unfairness. As with general algorithmic fairness, information access
stakeholders may experience unfairness on individual or group bases.

Classical welfare economics examines fairness in the form of distribu-
tion (Moulin, 2004): how to divide a resource fairly among individuals,
all of whom have some claim to it. This type of fairness consideration
can be considered distributional. In the information access context,
there are different multiple resources in question, depending on the
stakeholder: providers and subjects receive exposure with its resulting
material and reputational benefits, and consumers receive information
that hopefully meets their information needs.

Crawford’s representational harms also affect information access
systems, when the system misrepresents a user, an item, or the informa-
tion space. We distinguish between a representational harm, where the
harm itself is one of misrepresentation (e.g. misgendering a book author,
or presenting results that discourage girls from seeing themselves as
possible CEOs), and unfairness in the system’s internal representations
(e.g. user or product embedding spaces having a stereotyped compo-
nent). The latter may result in any of the kinds of harms we discuss
in this section (either representational or distributional), or may be
compensated for by other aspects of the system’s behavior.
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Sometimes harms, particularly with respect to legally-defined pro-
tected attributes, will be defined and proscribed by law; others will be a
matter of policy for the designer of a particular system. This breakdown
is also not entirely crisp: some harms will fall under multiple categories
simultaneously. We submit that it nonetheless provides a useful way for
understanding the ways in which discrimination and related problems
manifest and harm the system’s participants.

4.4.1 Direct Misrepresentation

An information access system can cause direct representational harms
when it presents inaccurate information about items.

Direct misrepresentation of item or provider characteristics can
harm both consumers and providers. Consumers are harmed because
they obtain inaccurate information, and the misrepresentation may keep
them from finding content through systems such as faceted browsing
interfaces or detailed keyword searches. Providers are harmed first
because they are misrepresented, which can be harm in itself, but also
may not have their product accurately discovered. For example, if a
children’s book is not correctly labeled as such, then users may not find
it when they are browsing or searching for children’s books on a topic.
This specific harm is also an example of a multi-category harm, as it is
also an unfair allocation of exposure to the book and its author and
publisher.

Direct misrepresentation can itself be unfair (as in the example of
misgendering) or it can happen in an unfair way (for example if some
providers’ content is more likely to be correctly represented than others
in a systematic way). It can also be either individual (if similar items
do not have similar representation) or group (if socially-salient groups
of items or producers are systematically misrepresented). For example,
as of 2020, a system using book author data from the Virtual Internet
Authority File (VIAF) will exhibit group-based direct misrepresentation
of transgender and non-binary authors, because multiple and non-binary
gender identities are not accurately stored in the VIAF (Ekstrand and
Kluver, 2021).

Misrepresentation can also harm broader sets of stakeholders. For
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example, Nagel (2021) documents an instance of a search engine result
page showing a carousel labeled “Famous Cherokee Indians” and dis-
playing photos of several celebrities, most of whom have no documented
Cherokee ancestry or affiliation. This misrepresents the celebrities them-
selves, but likely does not cause them significant direct harm; its more
substantial impact is misrepresenting what it means to be Cherokee —
and therefore the Cherokee nation — to users of the search engine. This
is also an example of a stakeholder that is impacted by an information
access system but is not a producer, consumer, or subject of its items.
While the root cause of this problem is likely missing information in
the underlying knowledge graph, it has an effect that compounds the
difficulties already faced by indigenous communities; fairness-related
problems can stem from any of the many issues in data or algorithms
that affect other aspects of information access systems.

One additional potential harm that can arise from representation is
that activating stereotyped perceptions a user may hold can affect their
processing and assessment of information (Bodenhausen and Lichten-
stein, 1987); inaccurately representing producers or subjects, or even
representing them accurately but unnecessarily, in a way that connects
with users’ negative stereotypes may impeded their ability to accu-
rately and appropriately make use of the results the system provides,
particularly in complex assessment situations.

4.4.2 Unfair Result Set Composition

An information access system can exhibit unfairness in the composition
of its result sets and rankings. This can have further downstream effects,
as information access systems are often the first step in users’ quests to
gather information for other purposes.

One example is the previously-mentioned case of image search re-
sults for “CEO” (Crawford, 2017). The set of results can affect users’
perceptions of both the current state and the possibilities of the role
of CEO (and it isn’t immediately clear which one to emphasize if they
differ — should the gender representation in such a result set reflect the
set of fortune 500 CEOs, all CEOs, or the general population?). Further,
if a student searching for “CEO” images for preparing a presentation,
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this not only affects who they see in the role of CEO, but affects the
images available to them for communicating with their peers. This kind
of downstream effect can arise in many settings, in education, business,
and beyond. Any unfair representation that results in reinforcing stereo-
types, either through the selection of items or explanations of results,
may amplify — or at least perpetuate — societal biases. Hoffmann
(2019) argues that this kind of representation of what is “normal” has
significant impact on how we understand and navigate the world and on
the dignity of the people represented: in the situations we discuss in this
monograph, the creators and subjects of information resources. Such
unfairness is also not limited to representation of the people involved;
Raj et al. (2021) notes that system results can also perpetuate gender
stereotypes, which is of particular concern when used by children.

Unfair result sets can also arise through a personalized information
access system’s user profile, or its interactions with item representa-
tions. A movie recommender may emphasize item relationships along
gender-stereotyped lines, so that a user receives “guy” movie recom-
mendations based on a few movies they’ve watched, instead of a set of
recommendations more broadly reflective of their tastes.

Ways result sets can have unfair composition include (Noble, 2018):

• Reinforcing stereotypes (of users, content, providers, subjects, or
any combination)

• Presenting an inaccurate picture of the information space

• Biasing users’ sense of the possibilities of the information space

4.4.3 Unfair Distribution of Benefits

Perhaps the most obvious way in which an information access system
can be unfair is by being unfair or discriminatory in how it distributes
benefits to its stakeholders. Information access provides consumers
with information that hopefully meets their needs, and providers with
opportunities for their content to be discovered; this can have many
repercussions, including financial (if access directly or indirectly results
in revenue) and reputational (by their content being made broadly
known), and can have material impact on providers’ career prospects.
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Distribution can be unfair at an individual level, if similar users
do not receive similar quality of results, or if similar content does not
have similar opportunity to be presented to users. While similarity in
the general case is often difficult to assess, in information access we
often have some estimate (or even measurement) of content’s relevance
to an information need. Relevance assessments provide a useful basis
for similarity-based evaluation of the distribution of opportunities for
user attention to content providers is individually fair. If two content
providers create documents that are comparably relevant to a particular
query, and they do not receive comparable exposure in result lists or
engagement from users, we may say that the system violates such an
individual fairness objective (Biega et al., 2018).

Utility estimates themselves may be unfair, if individual items with
comparable characteristics with respect to their ability to meet the
user’s information need do not receive the same score. Such cases may
require additional attention to ensure individual fairness. Individually-
fair distribution of result quality is, to some extent, already addressed
by information access evaluations that consider the distribution or order
statistics of quality and accuracy metrics, but differences in the rate
at which attention and relevance drop off mean that static rankings
generated by the Probability Ranking Principle are not necessarily fair,
whereas stochastic ranking policies that attend to the distribution of
exposure or attention can correct this discrepancy (Diaz et al., 2020).

Group-based distributional discrimination may arise in different
forms and for different stakeholders. On the consumer side, systemati-
cally underserving groups of users and failing to capture their perspec-
tives or interests is a form of distributional group unfairness (Mehrotra
et al., 2017; Ekstrand et al., 2018b); we discuss this in section 5.2. It can
also show up in less obvious ways, such as failing to properly interpret
queries from children (Dragovic et al., 2016).

Provider-side group-based distributional unfairness has the clear
manifestation of under-presenting results from particular, often disad-
vantaged, groups of content providers, such as authors who are members
of ethnic or gender minorities. Chapter 6 will cover this space in much
more detail.

In addition to the kinds of protected and sensitive groups typically
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considered in fairness work, such as gender, religion, race, and ethnicity,
information access applications bring additional sets of groups towards
which we may want to ensure distributional fairness. The work on cold
start in recommender systems (Schein et al., 2002) can be framed as
ensuring that new users and items are fairly treated. We may want to
ensure new or independent authors, artists, or studios aren’t crowded
out by more established sources, reducing the ability of up and coming
providers to thrive. Ensuring good quality across different languages or
regions can also be beneficial in information access applications.

There are important distinctions between distributional fairness of
different resources for different stakeholders that affect how we measure
and provide fair distributions. One key distinction is the subtractibality
(or rivalrousness) of the resource in question (Becker and Ostrom, 1995):
does one person’s use of the resource affect the ability of others to enjoy
it? For provider-side fairness, positions in result rankings are clearly
subtractible: in any given ranking, only one item can be placed in the
first position, and placing it there denies the position to other items.
The system may provide fairness overall by placing different items in
the first position in different rankings, possibly even in response to
the same information need, but any individual opportunity for user
exposure (defined as a particular ranking position in an information
access transaction) is a subtracible good. Chakraborty et al. (2017)
lean on this formulation by adapting existing algorithms for sharing
limited resources — specifically CPU time — to help fairly allocate
recommendation opportunities in sharing platforms.

On the consumer side, subtractibility is less clear. System utility
is typically not subtractible: one person obtaining high-quality, useful
responses to their information need typically does not generally pre-
vent others from receiving similarly relevant results. Many classes of
items are also non-subtractible, including digital content (web pages,
streaming music, etc.) and plentiful physical goods where user demand
is not likely to exhaust supply. Other items, however, are subtractible:
online auctions, for example, often have very limited stock, and only
a small number of applicants will actually receive any particular job;
while simply presenting the item to one user in a result list does not
itself reduce the ability of others to benefit from it, successfully con-
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suming the item does. This is also a significant concern for reciprocal
recommendation contexts such as those in matchmaking platforms for
dating, mentorship, and other involved relational commitments (Pizzato
et al., 2010), as “people have limited availability, so one person should
not be recommended to too many others”. Patro et al. (2020) apply the
concept to local business recommendations, which often have limited
physical space that is further reduced by distancing requirements for
public health; if too many people are recommended the same restaurant,
they may not all be able to enjoy it safely, but spreading out the rec-
ommendations can help more people get to a restaurant that they can
enjoy. Whether or not it is necessary to reduce the resource distributed
to some stakeholders in order to improve it for others is a key concern
in describing the distributive harm that an information access system
should avoid.

As much of the existing literature in fair information access focuses
on distributional aspects of unfairness, we go into this point in much
more detail in later chapters of this work (in particular, consumer
distributional fairness in section 5.2 and provider fairness in chapter 6).

Fairness in information access also requires careful attention to
how the stakeholders may be harmed. Again, different (potential)
problems require different approaches.

4.5 Fair from What Vantage Point?

Orthogonally to the stakeholder group, we can consider different vantage
points for measuring fairness. As noted above, there is a range of different
metrics and methodologies for measuring information access system
performance and these give rise to different ways of thinking about fair
outcomes.

Since information systems often have an underlying predictive ele-
ment, we can measure the accuracy of its predictions: does the system
predict what items a user will like and how much? Accurate results
deliver utility to users (helping them find items of interest) and also
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to item providers, because it means that their items are reaching ap-
propriate targets. As an element of fairness, we might ask then if the
system delivers different degrees of accuracy to different groups of users,
serving some well and others poorly, and/or if the system differs in its
prediction accuracy across protected groups.

There may be other aspects of information access performance of
interest, depending on the recommendation application. In some settings,
it may be possible to rank items on some objective scale of desirability.
For example, credit card offers with lower interest rates and lower fees,
and offer larger credit limits are better than those that charge higher
interest and fees for less credit; all other things equal, a job with a
higher salary is better than a lower-salary job. The objective quality of
the contents of a delivered results list is therefore an element of utility,
especially for consumers. We may want to measure the comparative
quality of such lists across protected and unprotected groups to identify
possible discrimination. On the provider side as well, some products
may be more profitable than others and unfairness may take the form
of presenting low profit items for one group and high profit items for
another.

In other cases, we may not distinguish between the qualities of
items but rather their relative frequency of appearance on lists. A
provider whose items appear very infrequently on result lists may
feel that the system is being unfair in not promoting their products.
This may also take the form of unfair representation as discussed
above. From a consumer’s point of view, differential distribution of
item appearances may also have an element of unfairness: consider,
for example, a recommender system that presents science toys on lists
shown to boys but not on those shown to girls (Raj et al., 2021).

Fairness concerns may go beyond the distribution of quantitative
exposure or utility.
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4.6 Fair on What Time Scale?

Typical off-line evaluation methodologies for information access systems
treat the test set over which outcomes are measured as if all the results
are generated at the same time; this corresponds to the simultaneous
assumption articulated by Mitchell et al. (2020). This tests how the
system state induced by the training data produces results for all
stakeholders at a point in time, but does not necessarily reflect how
users, producers, and other stakeholders actually experience the system’s
effects. Lathia et al. (2009) and others have looked at evaluation over
time, and Sun et al. (2020) advocate using time to split training and
test data to provide a more accurate picture of system performance,
but we have not yet seen significant applications of these concepts to
studying fairness.

Since information access systems in practice deliver results lists to
users who arrive at the system over time, it is important to examine
fairness as a property of information access outcomes delivered over
time (Biega et al., 2018). For example, we might ask whether a particular
fairness metric has been achieved within a set of results delivered
over some time window ∆t. A system might look back over such an
interval, determine whether a fairness metric has been met or not,
and try to adapt its algorithm to deliver improvements over the next
interval (Sonboli et al., 2020a).

Finally, the question of the dynamic nature of information access
delivery leads to the question of the impact of results on user behavior,
the impact of that behavior on subsequent system learning (the feedback
loop). As a simple example, we can consider the impact of popularity
bias, the fact that many recommendation algorithms reinforce the popu-
larity distribution across items (Jannach et al., 2015). A popular item is
recommended, then experienced and rated, appearing more popular in
the data, and getting recommended more often, etc. While the unequal
distribution of popularity is natural, this kind of positive feedback loop
can exacerbate such distributions and associated unfairness (Chaney
et al., 2018).
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The repeated nature of information access and its evolution over
time, particularly as the system learns and updates its models in
response to user interactions, means that point-in-time analysis is
not sufficient to fully understand the fairness-related behavior of
the system.

4.7 Fairness and the System Pipeline

In addition to the various dimensions along which we can define what
it means for an information access system to be unfair, this unfairness
can arise from a variety of sources. Section 2.1 and fig. 2.1 described
several components of a typical information access system; any of these
components introduce unfairness to the system, and we can consider
both evaluations and fairness interventions at many stages. In most
stages, unfairness can arise from the underlying data involved in that
stage, the computational models used to make access-relevant inferences
from that data, or both.

Item understanding can affect both producer fairness and the
ability to correctly locate documents to meet an information need.
Unfair representation of documents or categories may introduce repre-
sentational harm or have downstream distributional effects. In a job
search scenario, the document collection used to build the information
system may have predominantly male candidates; if there are gendered
aspects to how candidates present themselves in their documents, the
system may learn gender correlations to job capabilities. Unfairness may
arise from calculated metadata as well: for example, unfair inference
of sentiment scores from review documents may introduce unfairness
to the system at the classification stage. Although it is impossible to
have a holistic understanding of the items in a retrieval system, it
is necessary to be intentional in mitigating potential unfairness and
highlight possible limitations.

Representation learning, and possible unfairness or discrimination
in learned representations such as content embeddings, is one specific
way in which item understanding may contribute to unfair outcomes
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from an information access system. For example, the presence of racial
bias in reviews (Speer, 2017) or gender bias in a job description can lead
to an unfair outcome to different groups of stakeholders due to the bias
in representation. Bender et al. (2021) provide an extensive discussion
of the problems that can arise specifically when using language models
for item understanding, a number of which touch on fairness.

User understanding most directly affects consumer fairness. The
system needs to understand who its users are, their information needs,
and their capabilities and preferences; the user modeling dimensions
of information access particularly focus on this, as does the query
understanding component of information retrieval. The system does not
necessarily learn these characteristics in an unbiased way.

Retrieval and rendering, often including ranking, are central to
the observable output of the information access system. In chapter 6
we will go into more detail on the problem of fair ranking, which often
connects to re-ranking ideas from information retrieval. Other aspects of
rendering, such as result presentation, are less explored from a fairness
perspective. Several biases may get introduced in the system purely from
the user experience of the result page. Much more research is needed to
understand how different design elements may introduce unfairness to
otherwise fair retrieval results.

Behavior understanding is how the system improves itself, either
through automatic learning or feedback to system designers. However,
as noted previously, that opens up the possibility of creating a feedback
loop of that reinforces and amplifies any unfairness in the system.
The varied nature of behavioral feedback between user groups may
also affect the system’s ability to accurately learn to provide relevant
results towards different groups. Relevance feedback and click-through
data are common ways of understanding user behavior and improving
information access systems, but the data underlying them can easily be
biased with respect to any of the stakeholders. Such feedback loops can
easily amplify small differences, such as one item being slightly more
relevant than another, into large differences in exposure or attention
(Ensign et al., 2018).

Evaluation of information access systems, as discussed in sec-
tion 2.5, is inherently different from the evaluation of classification
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systems. Where classification has a rather fixed notion of decisions
and outcomes, evaluating retrieval systems relies on understanding the
underlying user model (Singh and Joachims, 2018; Biega et al., 2018;
Sapiezynski et al., 2019). Evaluation based on biased relevance judge-
ments or user response data can result in incorrect design decisions with
fairness implications, or in selection of models or parameters that are
unfair; evaluation is also a crucial place for assessing the fairness of an
information access system. One approach to this latter goal to evaluate
fairness and relevance separately (Yang and Stoyanovich, 2017; Das
and Lease, 2019). There is a scope for novel metrics that incorporate
different notions of fairness as well as relevance.

Unfairness can arise from both data and models at any stage of the
information access process. Much research is needed to understand
the role each plays in the overall fairness-related behavior and
impacts of an information access system.

4.8 Fairness and Other Concerns

The relationship between fairness and other concerns and concepts in
information access is not straightforward. As we have argued, some
historical concerns can be framed as certain kinds of fairness problems:
recommender system cold-start work, for example, seeks to ensure that
new items and users are given a fair opportunity for exposure or quality
from the recommender system, and long-tail recommendation looks to
prevent the system from being unfairly biased towards popular items
disproportionate to their utility to users. Length normalization attempts
to decrease systems’ unfair preferential treatment of long documents
(Singhal et al., 2017). While these do not deal with the kinds of socially-
salient groups often considered in fairness research, they still represent
the core logic of anti-discrimination: items should be retrieved based on
their utility to the user’s information need, not other incidental factors
such as popularity, newness, or length (except when those factors are
directly related to the need). Beyond the desire to root out unwanted
incidental biases, fairness research can be viewed as extending this
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logic from biases stemming from endogenous properties of items and
their representation in the system to biases stemming from exogenous
properties that relate to the broader social location of items, providers,
users, and other entities.

Other concerns are related, and may have metrics and technical
machinery that can be reused for fairness purposes, but flow from
different normative concerns. One frequently-mentioned example of
this is diversity: provider fairness and diversity look very similar, and
systems providing more diverse search results or recommendations will
probably often be more fair towards different providers. However, they
flow from different normative concerns and should therefore be assessed
with metrics that reflect those concerns. Diversifying techniques such as
MMR (Carbonell and Goldstein, 1998) or xQuAD (Santos et al., 2010)
can be used to improve fairness as done by Sonboli et al. (2020b), but
the results should be assessed on the basis of fairness.

Finally, some concerns may be in tension. Work in both information
access fairness and general ML fairness often discusses a tradeoff between
fairness and accuracy. Sonboli (2022) makes the terms of this potential
tradeoff precise by framing it specifically as a tradeoff between fairness
and accuracy in classical metrics used to measure recommendation
accuracy in offline evaluations. Wu et al. (2021) treat this tradeoff
itself as a fairness problem, arguing that decreasing consumer utility
to improve fair provider exposure (section 6.2) is unfair to consumers,
but prioritizing consumer metrics with no consideration to equity of
exposure is fair to providers (and they provide definitions and algorithms
for navigating this multi-sided fairness).

However, the well-known disconnect between these offline metrics
and online metrics of utility or user satisfaction (see e.g. Rossetti et
al., 2016; Kouki et al., 2020) means that the relationship or tradeoff
between fairness and utility may be very different than the relationship
between fairness and offline accuracy. Even in the offline setting, though,
the tradeoff is not necessarily inherent, as Bigdeli et al. (2021) show
empirically through the existence of techniques improving both accuracy
and fairness; Dutta et al. (2020) argue that observed tradeoffs often
arise due to bias in the data used to evaluate accuracy. There is not
currently enough research on the contours and limits of either fairness,
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accuracy, or utility to make definitive conclusions on their relationship
in the general case.

Fairness may be in tension with accuracy or utility in some cases
or experimental settings, but more research is needed to more fully
understand and predict their relationship. Fairness has significant
overlap or complementarity to other concerns for information
access, such as diversity and popularity bias.

4.9 Contributing Back to ML Fairness

In light of the significant differences between information access fairness
and the fairness contexts typically studied to date, and the various
challenges in the problem of ensuring fairness in information access
systems, we also believe that information access has much to contribute
back to the broader algorithmic fairness community.

One contribution is that the ways information access violates as-
sumptions of classical fairness techniques (section 4.1) can help make the
limits of those techniques concrete. We can point to specific applications
where decisions can no longer be made and evaluated separately, or
simultaneously, and study the implications of that violation for fairness
metrics and methods. Real life frequently violates these assumptions
as well, but often on different time scales; while people apply for a
relatively few jobs over their lifetime, information access systems make
millions of decisions about how to rank items over short time periods.

Information retrieval and recommender systems also have well-
understood data sets and strong community norms of demonstrating
performance on benchmark data sets. Many of these data sets are
amenable to various forms of fairness analysis as well. This data avail-
ability may enable the study of fairness concerns over different, and
sometimes much more, data than are widely available for other applica-
tions. The details will of course change when applying fairness research
tested on these kinds of data to other applications, but information ac-
cess may be a useful testing ground for mathematical or computational
techniques with broader applicability.
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Finally, information access represents a domain with substantial
impact on lives, livelihoods, and perceptions of the world, but a very
different impact than the often-studied domains of criminal justice or
lending. It may, therefore, present an opportunity to experiment with
fairness measures, possibly even in real systems, where the human cost
of getting it wrong or making the situation worse is quite different.

While great care is required to avoid abstraction traps when at-
tempting to translate from fair information access to other problem
settings (Selbst et al., 2019), we think there is much that information
access has to say with implications for other domains.

Information access has the potential to improve fairness research
more broadly, as lessons learned studying information access may
be applicable in additional domains considered by fairness re-
searchers as well.

4.10 Navigating the Problem Space

Our goal with this section is to provide guidance to enable researchers,
developers, students, and others building or affected by information
access systems to consider potential harms, particularly harms related
to fairness and discrimination, that can arise in information access. We
do not claim this treatment is complete, and problems do not necessarily
fall cleanly into one problem or another; scholars may also disagree with
some of our categorizations here. Humanity is messy, and attempting
to categorize the ways in which it can be harmed by technology is
necessarily a messy and imprecise endeavor. We find this framing useful,
however, for organizing our own understanding of the subject, and will
use it to organize our discussion in the remaining. We submit that
clearly describing and characterizing the harm(s) to be measured or
mitigated in a particular work is more important than determining
precisely which box it occupies in a rigid taxonomy, and we hope that
our treatment provides a useful starting point for developing such clear
descriptions.
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In the rest of this monograph, we describe existing work and needed
future research to address some of the harms cataloged in this section.



5
Consumer Fairness

Having described the problem space of fairness in information access,
we now turn to surveying the literature to date on various definitions,
methods, and metrics for fairness, beginning with consumer fairness. As
noted in chapter 4, information access systems are often in the position
of mediating between providers of items or information and consumers
of recommendations who are interested in those items. While fairness
concerns may arise for any stakeholder in the system, these two groups
have the most direct stake in the fairness properties of a recommender
system and are the most widely-studied. Table 5.1 summarizes key work
we cite in this chapter.

Consumer fairness is concerned with how an information access
system impacts consumers and sub-groups of consumers, and whether
those effects are fair or result in unjust harms. For example, if a system
is delivering recommended job postings to job seekers, it might be a
fairness concern that different sub-groups of users, women, for example,
could receive lower quality results than others.
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Measuring group fairness Yao and Huang (2017), Ekstrand et al. (2018b), and
Mehrotra et al. (2017).

Enhancing group fairness Yao and Huang (2017) and Abdollahpouri (2020).
Recommended Items Nasr and Tschantz (2020), Kamishima and Akaho

(2017), and Li et al. (2021)
Fair User Embeddings Beutel et al. (2017), Edwards and Storkey (2016), and

Madras et al. (2018)

Table 5.1: Summary of articles in consumer-side fairness.

5.1 Individual Fairness

The distinction between group and individual fairness is relevant for
consumer fairness. As described in chapter 3, individual fairness con-
siders how individuals are treated by the system and whether similar
users have similar experiences or quality of service within the system.

One of the most basic outcome measures that can be applied is the
accuracy of results produced. Typical evaluation measures such as recall
or nDCG as described in section 2.5.2 can be used in offline experiments
to determine the degree of accuracy that each user experiences in the
system. While the central tendency of such measures form standard
evaluation metrics for information access, the question of individual
fairness calls for an examination of the distribution of utility across
information requests, possibly marginalized to one dimension (such as
user or query). In an extreme case, one might see a bimodal distribution
of the evaluation metric, with some users getting accurate results and
other quite inaccurate results. In such a case, the average performance
is not capturing the user experience well; in particular, some users are
being poorly served.

A form of evaluation that looks at the system’s minimum perfor-
mance would provide a form of corrective to this type of individual
fairness problem. The “fairness without demographics” approach de-
scribed by Hashimoto et al. (2018) works to solve this problem by
constraining performance for all users within a particular error region so
that the discrepancy in accuracy across users can be controlled overall.
We are not aware of work applying this form of individual fairness in
information access systems.
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Constraining the system’s accuracy distribution is a rough form
of individual fairness with a kind of Rawlsian logic. It amounts to an
assertion that all users are similar to all others, and thus can be used
to ensure that all users are getting some basic level of service from
the system. However, enforcing this type of fairness produces some
challenges for information access systems, especially personalized ones.
For example, User A with a small user profile (a cold start user) is
generally expected to get less accurate recommendations than User
B with a more extensive profile. It would not be a good solution to
deliberately corrupt the recommendations for User B in order to equalize
the accuracy of their results.

It is possible to take a more textured view of individual fairness in
keeping with “similar users, similar results” rubric. For example, we
could control for profile size in comparing accuracy distributions, ensur-
ing that we only compare the system’s performance for User A against
other cold-start users. Thus, profile size itself might become a source of
unfairness, and this could well be be true of other features along which
we might compare users to determine their similarity for the purposes
of individual fairness. From this standpoint, it would be considered fair
for fans of action movies to get similarly good results and devotees of
documentaries to get similarly bad results from a recommender, an
outcome that stretches what we might want a normative definition of
fairness to provide.

5.2 Group Fairness through Disaggregated Utility

One major consumer-side group fairness problem is to determine whether
the system provides comparable quality of service or utility to different
groups of consumers, or whether there are groups — especially protected
groups — whose information needs are systematically under-served by
the system. One way to assess this is by performing the same kind of
utility-based evaluation that is usually used to evaluate the system’s
effectiveness, such as an offline accuracy evaluation or an online A/B
test, and disaggregating utility by consumer groups. That is, rather
than computing an overall mean utility per user, computing average
utility for each group.
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In many cases, this utility can be operationalized through measures
of the system’s ability to meet information needs: click-throughs on
search results or recommendations, ranking accuracy metrics such as
nDCG or ERR, etc. Consumer fairness studied in this way does not bring
anything new to the problem of evaluating the system, except how the
results are broken down and analyzed. An overall metric µ̄ “ 1

n

ř

π µpπq

is replaced by a per-group metric:
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This metric can then be tested for significant between-group differ-
ences to assess whether some groups are experiencing better effectiveness
(for whatever reason) than others. It applies to both online and offline
measures of effectiveness.

Some applications, as noted above, may have further dimensions
of utility connected to objective qualities of an item. For example,
in a job opening recommender system, job listings have salaries. If
protected group users receive on average lower-salary listings, this could
be considered unfair regardless of other personalization considerations
or equal satisfaction metrics, depending on the goals and context of the
application.

Mehrotra et al. (2017) performed a disaggregation of user satisfaction
with a search system across multiple measures (graded utility, page
clicks, query reformulations, and successful clicks), finding differences
between user age groups and genders; the system was more effective
for older users than younger users across all measures. They further
employed matching to control for query type and difficulty, to determine
if differences in effectiveness were due to demographic differences in the
queries issued; after context matching, both age and gender differences
in satisfaction reduced almost to zero.

Yao and Huang (2017) focus on predicted rating fidelity, develop-
ing several unfairness metrics capturing different types of disparate
prediction errors for protected and unprotected groups. They measure
overall disparate error as well as separately analyzing over- and under-
predictions: does the system systematically under- (or over-) estimate
some users’ preference more than others?
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Ekstrand et al. (2018b) disaggregated offline top-N performance —
as measured by nDCG — by age and (binary) gender for collaborative
filtering algorithms trained on movie ratings (with the MovieLens 1M
data set) and on music plays (with the Last.FM 1K and 360K data
sets), finding statistically significant differences in utility between gender
and (in some cases) age groups, although not always in the same
direction. They further showed that this difference was not explainable
by differences in user profile size, and that resampling training data to
have equal gender representation had the effect of substantially reducing
cross-group utility differences.

5.3 Disparate Effectiveness

The studies by Mehrotra et al. (2017) and Ekstrand et al. (2018b)
represent different approaches to — and extents of — understanding
the reasons for observed differences. Both begin with demonstrating
the existence of a disparity in group outcomes: some groups receive
better quality of service, as measured by the result quality metric.
Such discrepancies bear similarity to disparate impact, in that there
is a difference in outcomes for different groups, but differs in a crucial
respect: unlike a typical classifier in the settings in which disparate
impact is considered, an information system is not making decisions
about the consumers that differ by group. We therefore refer to this
kind of unfairness as disparate effectiveness: the system is more
or less effective (in this case capable of satisfying information needs)
for different groups of users. Identifying this disparate effectiveness is
relatively straightforward. If there is a per-user or per-query measure
of result utility, aggregating that over users’ group membership and
looking for (statistically significant) disparities detects the existence of
disparate effectiveness.

That is only the beginning of studying fair utility, however. Disparate
effectiveness can be caused by biases in any portion of the information
access pipeline (sections 2.1 and 4.7). Narrowing down potential causes is
crucial for identifying whether and how to address disparate effectiveness,
particularly since — as we will discuss shortly — regularizing it away is
often is not a desirable strategy. There are several pathways that could
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give rise to disparate effectiveness:

• The outcome measure may not satisfy measurement invariance
with respect to consumer groups: that is, users in two different
groups with the same subjective experience of satisfaction of their
information need may still respond to the system in different ways,
such that a behavior-based measure of satisfaction (such as clicks
or session length) may measure satisfaction differently for them.

• The system’s ability to model document relevance may depend on
the availability of training data, and thus the system is not
able to learn as effectively how to meet information needs distinct
to minority groups of users.

• Item relevance to the needs of different groups may differ in a
way that the model may hold constant across all users or groups
of users, so minority users are forced to use a relevance model
optimized for the majority group.

• There may be mediating factors between an information need
and its satisfaction that systematically differ between groups that
in turn affect the system’s ability to deliver satisfactory responses.

Mehrotra et al. (2017) address mediating factors through their
context-matching design: by matching queries as closely as possible on
multiple dimensions that affect their difficulty for the system, they are
able to control for many of these factors. The fact that this control
eliminated most of the disparate effectiveness is evidence that groups’
differing satisfaction is mostly a result of these mediating factors. If a
query has the same difficulty, groups tend to have the same satisfaction
with the system’s results for that query. This does not imply that
observed differences are therefore not evidence of unfairness and do
not need to be addressed; rather, it points to where the differences are.
Younger users have lower satisfaction because they issue queries that
are more difficult for the system to satisfy. Identifying the kinds of
queries that present such difficulties, and are more frequently issued
by under-served groups, provides a pointer to where engineering effort
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can be spent to improve quality of service for users currently receiving
worse results.

The matching design is very powerful for isolating these effects, as
it allows for variables known to affect query difficulty to be held as
constant as possible between groups. It has the downside, however,
of discarding a great deal of data (in this case, queries) that cannot
be matched. If the disparate effectiveness arises primarily from those
queries that cannot be matched, a matching design may obscure a real
inequity in quality of service.

Ekstrand et al. (2018b) targeted one specific mediator, profile size,
with a linear model, and found that it did not explain observed differ-
ences in recommendation quality. They also investigated the impact
of availability of training data, and found that it did have significant
impact on the observed differences. Downsampling is not necessarily
an advisable approach in actual applications, because throwing away
some of a group’s data just because there is more of it is questionable
machine learning engineering practice, but it is a useful strategy for
narrowing down the causes of an observed discrepancy.

Neither of these approaches is strictly better than the other; they
achieve different and complementary objectives through different means.
Studying and ensuring consumer group fairness requires a variety of
tools, and the field is still so new that systematic understanding of the
strengths and weaknesses of different methodologies has not yet been
developed.

5.4 Providing Fair Utility

Detecting and quantifying inequitable distributions of system utility
is one thing; correcting them is another. Yao and Huang (2017) intro-
duce regularizers to remove discrepancies in rating prediction errors;
regularizers can also be employed to target various other discrepancies.

Examples of post-processing approaches take the form of re-ranking
recommendations to improve their fairness properties. These approaches
have typically focused on provider-side fairness, but Abdollahpouri
(2020) considers user groups based on their level of interest in popular
items and shows that, across recommendation algorithms, users with an
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interest in less-popular niche items were not receiving recommendations
in line with their interests. Abdollahpouri also presented a re-ranking
approach based on the idea of calibration (Steck, 2018) to improve the
fairness for these user groups.

Removing disparate effectiveness through an algorithmic interven-
tion is not the obviously correct solution in many cases, however. Pro-
viding one user better results than another does not take anything away
from the under-served user that they may otherwise have obtained and
may not violate legal or ethical norms of fair treatment. This is different
from classical fair decision making settings, where disparities such as a
qualified borrower’s chances of being approved for a loan differing on
account of their race or religion are considered by many ethical and legal
frameworks to be unacceptably discriminatory. It also differs from the
provider fairness context, where giving one provider a recommendation
slot ipso facto prevents another provider from occupying that slot and
obtaining the benefits thereof. In particular, and in contrast to provider
fairness, the well-served user’s high-quality results are not usually the
reason the under-served user receives worse results, and decreasing their
result quality in the name of fairness is itself arguably unfair. Informa-
tion access quality is not a rivalrous good, a fixed amount of which can
be allocated across the users; we can improve experience for some users
without hurting others at all. We therefore recommend caution when
using regularizers or other algorithmic techniques designed to simply
reduce disparaties in system consumer-side effectiveness.

Another approach is to treat the inequity through engineering process.
If an analysis of mediating factors identifies that an under-served group
issues queries that are systematically more difficult to satisfy in an
identifiable way, prioritizing efforts to improve the system’s ability to
handle those queries, instead of efforts that will primarily improve
quality for users already receiving the system’s best results, can address
the inequity (and may improve service for the majority group as well).

5.5 Fairness Beyond Accuracy

While much of the work on consumer fairness focuses on the quality
of recommendations, some work looks at other aspects of consumer
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experience that may be discriminatory, such as stereotyping or the
specific items users receive. Ali et al. (2019) studied the distribution of
ads on Facebook to understand potentially discriminatory impact in
the visibility of different kinds of ads. They found that even when an
advertiser wishes to have fair distribution of their ad, for example to
ensure that an ad for a job opening is seen by people of all genders, the
combination of relevance optimization and market dynamics results in
disparate distribution of ads across racial and gender lines. Nasr and
Tschantz (2020) describe bidding strategies to attempt mitigate such
effects and ensure fair ad distribution even when the platform does not
provide it.

More generally, Kamishima and Akaho (2017) presented a proba-
bilistic test for the independence of results from a user’s (or item’s)
protected class. Fairness, under their construct, is when the probability
of a particular item being recommended is independent of the user’s
protected class. They then incorporated this idea into a loss function
for a matrix factorization collaborative filtering algorithm to optimize
the system to produce independent results. This can be useful in any
context where users should not be recommended different types or sets
of items on the basis of their group membership. Li et al. (2021) build
on this independence objective in two ways: they allow fairness to be
personalized, such that different users have different sensitive features
they don’t want affecting their recommendations; and they adopt a
causal model to produce recommendations without causal pathways
from the sensitive features to the recommendation lists.

Consumer fairness also extends beyond the items recommended,
and can be applied to inner components of information. Beutel et al.
(2017) present an approach to learning fair representations in a way
that can be applied to consumers, by learning embeddings (such as the
user and item embeddings in a recommender system) in an adversarial
setting set up to minimize the ability to predict a user’s sensitive
attribute, such as gender, from their embedding. This has the potential
to reduce stereotype effects in resulting recommendations, among other
applications to both consumer- and provider-side fairness, although we
have yet to see it deployed in this way. Similar ideas are explored by
Edwards and Storkey (2016) and Madras et al. (2018).
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5.6 More Complex Scenarios

Most of the work to date on consumer fairness assumes rather limited
group fairness settings. In particular, it often assumes that only a single
protected group, or a single dimension of sensitive attributes, needs to
be considered for fairness; to the extent that they do consider multiple
dimensions, these are considered separately (e.g. age and gender, but
not combinations thereof). But a job recommender, for example, may
need to meet simultaneously meet constraints having to do with race,
gender, religion, and other types of protected categories, as determined
by applicable laws and organizational requirements. As noted above,
the complexities of the interaction of multiple protected categories have
been explicated by Crenshaw (1989) and others under the framework
of intersectionality. In the fair machine learning literature, it has been
studied under the topic of rich subgroup fairness (Kearns et al., 2019).
In recommender systems, there is some research involving subgroup
fairness across providers (Sonboli et al., 2020b). However, no existing
work addresses the compound nature of the disadvantage that Crenshaw
highlights as characteristic for individuals who find themselves at the
intersection of multiple protected identities.

Another simplification in this model of consumer-side fairness is that
it assumes categories are binary (protected vs unprotected) rather than
constellations of attributes, including continuous qualities. It is possible
that some existing models could be extended to handle continuous
sensitive features (age or income, for example) but there is not any
extant work in recommendation fairness along these lines as of this
writing.



6
Provider Fairness

We now turn to the second of the two primary stakeholder typically
considered in multistakeholder information access analyses: provider
fairness is concerned with fairness towards the providers (or producers)
of the content or items the system makes available to its users. This
primarily considers systems where content providers create and publish
content that they want consumed, and for which they obtain some
benefit from having users discover their content. This may be a direct
tangible benefit, such as subscription, advertising, or pay-per-play rev-
enue; it may be indirect, such as the reputational benefits that accrue to
journalists or academics for producing widely-read content; or it may be
intangible benefits, such as the satisfaction of providing useful content
to readers. Under the definition of information access with which we
opened chapter 2, this aspect of fairness considers the impact of the
system on providers who gain utility from the system satisfying a user’s
information need with an item they provided. Table 6.1 summarizes
key papers we cite here.

These benefits are often abstracted under the notion of exposure (or
attention) (Diaz et al., 2020; Biega et al., 2018): an item, and therefore
its provider, appears in result lists, and users have the opportunity to
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Measuring group represen-
tation

Das and Lease (2019), Zehlike et al. (2017), Sapiezynski
et al. (2019), Deldjoo et al. (2019), Yang and Stoy-
anovich (2017), Raj et al. (2020), Ekstrand and Kluver
(2021), and Epps-Darling et al. (2020)

Enhancing group represen-
tation

Celis et al. (2018), Ekstrand and Kluver (2021), Zehlike
et al. (2017), and Garca-Soriano and Bonchi (2021)

Measuring individual util-
ity

Diaz et al. (2020) and Biega et al. (2018)

Measuring group utility Biega et al. (2018), Diaz et al. (2020), and Singh and
Joachims (2018)

Enhancing group utility Biega et al. (2018), Diaz et al. (2020), Singh and
Joachims (2018), Kamishima et al. (2018), Burke et al.
(2018), and Zhu et al. (2021)

Pairwise fairness Beutel et al. (2019) and Narasimhan et al. (2020)

Table 6.1: Summary of articles in provider-side fairness.

interact with these items. We can treat result list opportunities as a
resource, in which case the system is distributing these resources across
the different providers (either individually or by groups), and we are
concerned with whether or not that allocation is fair. For example, in the
job candidate search scenario, when an employer is looking for people to
hire, different protected groups (e.g., gender and ethnic groups) should
be treated fairly in terms of their members appearing in recommended
candidate lists. In music discovery, fairness would arguably require
different artists whose work is equally relevant to a user’s taste to have
comparable exposure in their recommendations and streams.

In many scenarios, there are multiple parties who could be considered
the provider of an item, at different levels and with different roles. For
example, in a news portal, both individual journalists and publication
venues are providers of a news article. In music recommendation, songs
and albums have recording artists and record labels, as well as additional
providers such as songwriters. Movies and television shows typically have
a long list of contributors who could be considered providers. Studies
of provider fairness typically focus on just one type of provider, but
recognizing the diversity of provider relationships helps contextualize
these concepts in the broader space of provider-side impacts of retrieval
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and recommendation.
Allocating utility is not the only way that an information access

system can affect content providers, although it is the most commonly
studied. In this chapter, we will also discuss problems and research
related to other ways information access systems may unfairly harm (or
help) providers.

Finally, we note that diversity is often closely related to provider
fairness — indeed, one question we are often asked when presenting
work on provider fairness is how this differs from diversity. As noted in
section 4.8, system modifications intended to enhance the diversity of
results may be useful tools for improving the system’s provider fairness,
but diversity and fairness respond to different normative concerns and
demand different metrics. Diversity in recommendation and search
results is mainly focused on consumer intent, intending to present
results that meet a wide range of users’ topical needs. In contrast,
provider fairness is motivated by justice concerns to ensure that different
providers receive fair opportunity for their content or products to be
discovered.

Our presentation here builds on the integration of provider fair-
ness metrics for rankings provided by Raj and Ekstrand (2022). The
literature to date differs in whether it establishes fairness metrics or
fairness constraints; we here present the constructs in their original
form, normalized for notation; constraints can often be converted to
metrics, and Raj and Ekstrand provide metric versions of some of these
constraints. Zehlike et al., 2022 and Kuhlman et al., 2021 provide addi-
tional comparisons and summaries of provider-fair ranking; in particular,
Zehlike et al.’s treatment provides a particularly thorough discussion of
the normative principles underlying different ranking metric decisions.

6.1 Provider Representation

Many constructs for provider fairness are concerned in some way with
representation: are the providers of items returned representative of the
broader population, or some other reference distribution of provider
groups? It is always a group fairness construct, as this kind of rep-
resentativeness is meaningful to the extent that item providers are



108 Provider Fairness

Metric(s)
Goal Section(s)

PreF∆ (prefix fairness, Yang and Stoyanovich, 2017)
Each prefix representative of whole ranking

AWRF∆ (attention-weighted rank fairness, Sapiezynski et al., 2019)
Weighted representation matches population 6.1.1

FAIR (Zehlike et al., 2017)
Each prefix matches target distribution 6.1.1

DP (demographic parity, Singh and Joachims, 2018)
Exposure equal across groups 6.2.2

EUR (exposed utility ratio, Singh and Joachims, 2018, orig. DTR)
Exposure proportional to relevance 6.2.2

RUR (realized utility ratio, Singh and Joachims, 2018, orig. DIR)
Discounted gain proportional to relevance 6.2.2

IAA (inequity of amortized attention, Biega et al., 2018)
Exposure proportional to predicted relevance 6.2.1, 6.2.2

EEL, EER (expected exposure {loss, relevance}, Diaz et al., 2020)
Exposure matches ideal (from relevance) 6.2.1, 6.2.2

EED (expected exposure disparity, Diaz et al., 2020)
Exposure well-distributed 6.2.1, 6.2.2

Pair (Beutel et al., 2017; Narasimhan et al., 2020)
Pairwise rank accuracy equal across groups 6.3

Table 6.2: Fair ranking constructs and their objectives. Adapted from Raj and
Ekstrand (2022) by permission of the authors; metric names from that paper, except
for Pair.

representative of their groups. Unfortunately representation is an over-
loaded term; we are not concerned here with the internal or external
representations of any individual provider, but rather with how the
system represents the space of providers to the user.

This kind of provider fairness can be concerned with a representa-
tional harm, in that users who experience a skewed view of the popula-
tion of item providers may develop (or have reinforced) an imbalanced
view of who creates content; or it may be a proxy for a distributional
harm, as result lists in which particular provider groups are systemati-
cally under-represented are likely to result in unjust denial of exposure
or utility to those groups.

These fairness constructs are usually independent of relevance: it is
assumed that the lists in question are already optimized for utility, and
their fairness is measured as a separate concern.
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6.1.1 Measuring Representation

Provider group representation in result lists is typically operationalized
through a distribution over provider groups. There are therefore three
components to a representation-based measurement of information
access results:

• A multinomial target distribution Ptarget over provider groups G

• A distance function ∆ that computes the distance between two
distributions over provider groups

• A means of computing group distributions Pπ from the list and
comparing them to the target distribution

When there are only two provider groups under consideration, such
as a protected and unprotected group, the distributions reduce to
binomials.

The simplest form of measuring provider representation is to com-
pute a multinomial from a system decision π based on the number of
times each item appears (Das and Lease, 2019); for a single group G P G,
this is:

PπpGq9|td P π : pd P Gu|

Unfairness can then be defined using the distance ∆pPπ, Ptargetq (e.g.,
the Kullback-Leibler divergence, ∆pPπ, Ptargetq “ ∆KLpPπ}Ptargetq); a
normalized (un)fairness metric can be computed by minimax-scaling
the divergence (Das and Lease, 2019). Simple binomial fractions are also
the family of metrics for which Krnap et al. (2021) developed sampling
procedures for estimating with incomplete labels.

This approach is good for measuring overall list composition, but it
does not take into account the relative visibility of different positions in
the ranking. Even when we are concerned with representation, not the
distribution of utility, it is reasonable to expect the distribution among
items at the top of the ranking to have a larger impact on the users’
perception of the space than items further down the list.
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There are two basic approaches in the literature to date for incor-
porating rank position into a representation-based fairness construct.
The first is to consider prefixes of the ranking. Zehlike et al. (2017)
presented a prefix-based approach for binomial group fairness that ap-
plies hypothesis tests to prefixes of the list of increasing length. For
each prefix πďk (of length k) with m items from the protected group,
they compute the probability that a list of that length would have
at most m protected-group items under the null hypothesis that its
item providers were independently drawn from the binomial target
distribution (Ftargetpm|kq, where Ftarget is the cumulative distribution
function of the target distribution). If the null hypothesis is rejected
(i.e. Ftargetpm|kq ă α) for a prefix of the ranking, after correcting for
multiple comparisons, the ranking is deemed to be unfair. This ensures
that a ranking cannot be considered fair unless provider groups are
evenly represented throughout the ranking.

Another approach is to employ a discount factor δprq to down-weight
representation further down the list. Sapiezynski et al. (2019) do this,
so that:

PπpGq9
ÿ

r

δprqIpppπrq P Gq (6.1)

where Ip¨q is the 0, 1 indicator function. This construct, called
“Attention-Weighted Rank Fairness” (AWRF) by Raj and Ekstrand,
supports more than two groups, and can be extended to real-valued or
mixed group membership weights wpd,Gq, either to represent multiple
group membership or uncertainty about the group alignment of an
item. If δ forms a distribution such that δprq is the probability of the
user selecting the item at position r, then the distributions computed
under this definition are the probability that the user will select an item
provided by a member of a particular group.

As before, the distribution from the ranking can be compared to
the target distribution using a suitable discount function; this can
be Kullback-Leibler divergence (Das and Lease, 2019), cross-entropy
(Deldjoo et al., 2019), or another suitable difference; in their study,
Sapiezynski et al. (2019) used the Z-approximation for the binomial
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test statistic.
So far, we have not discussed Ptarget: how do we determine the ideal

target to which a ranking’s group distribution should be compared?
Each of these approaches abstracts over this target; Sapiezynski et
al. (2019) call it the population estimator, assuming that the goal
is for the providers in a ranking to be representative of the broader
population from which they are drawn; Deldjoo et al. (2019) call it
the fair distribution, assuming we have some target we deem “fair”.
The precise choice of target distribution will depend on the domain,
application, and specific fairness goals. Potential reasonable choices
include:

• Uniform (Deldjoo et al., 2019)

• The overall population of item providers

• The set of providers of items at least marginally relevant to the
information need (Yang and Stoyanovich, 2017)

• An estimate of the distribution in society at large

Calibrated fairness (Steck, 2018) compares result lists to the user’s
past activity: under this definition, the group distribution in the user’s
reading, listening, or purchasing activity is used as Ptarget. For example,
this would consider a music recommender to be gender-fair if the mix
of artist genders in each user’s recommendations match the mix in their
previous listening history.

There is not currently consensus, or even much study, of the relative
strengths and weaknesses of these approaches. Raj and Ekstrand (2022)
and Kuhlman et al. (2021) provide some direct comparisons, but papers
typically measure a particular fairness construct without comparing with
other metrics (aside from possibly variants on the same idea). This isn’t
as bad as it seems, however, because construct validity — measuring
the intended fairness objective — is a more important property for a
fairness metric than consistency with prior results.
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6.1.2 Studies of Gender Representation

Representation-oriented metrics have formed the backbone for studies
of gender fairness in recommender systems that are focused primarily on
understanding system behavior, not on developing fairness constructs.
Both of these studies operationalize gender fairness as the fraction of
recommendations or interactions that are with items provided by women
(“% Female”).

Ekstrand and Kluver (2021)1 studied this in the context of book
recommendation, looking at gender representation in repositories, user
reading or rating histories, and collaborative filtering recommendations
across multiple book recommendation data sets. Their work documents a
large composite data set for studying fairness in book recommendation2,
that is likely useful for many more search and recommendation studies,
particularly ones looking at provider fairness.

Ekstrand and Kluver found that women were better-represented
among the authors of books read or rated by users than they were in the
Library of Congress catalog, and that users tended to read more men
than women but were highly diffuse in their gender tendencies. They
employed a hierarchical Bayesian model to account for different user
activity levels and produce smoothed estimates of users’ gender biases,
which they then used in a regression to examine whether collaborative
filtering recommendation lists had gender balances that correlated
with users’ reading histories (calibrated fairness). They found that
collaborative filters did reflect users’ biases with respect to author
gender in their recommendation lists, although to different degrees.

Epps-Darling et al. (2020) conducted a similar analysis of music
listening activity on Spotify with respect to artist gender. They found
that male artists dominated streaming activity in both recommender-
generated (“programmed”) and user-generated (“non-programmed”)
activity; they also found, though, that increased prevalence of female
artists in programmed streams was correlated with increased non-
programmed listening activity for female artists. They also looked
for a difference in listening to women artists along user gender and

1An earlier version is provided by Ekstrand et al. (2018c).
2https://bookdata.piret.info

https://bookdata.piret.info
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age, but did not find an user demographic differences in the share of
streaming activity that went to female artists.

In contrast to this lack of an interaction effect between artist gender
and user demographics in music listening, Thelwall (2019) found in his
analysis of GoodReads reviews and ratings that users are more likely
to give high ratings to authors of their own gender.

While much of the work on provider-side fairness is concerned with
defining metrics and optimization strategies, these studies provide more
extended examples of studying the sources of bias and the propagation
of such biases through standard recommendation algorithms.

6.1.3 Ensuring Fair Representation

Methods for ensuring fair representation often follow from the metrics
that implement a fairness construct. One common way to provide
representational group fairness is through re-ranking. In binary-group
settings, a greedy approach that selects the best item from the original
ranking that does not violate the fairness constraint (Celis et al., 2018)
or make representation worse (Ekstrand and Kluver, 2021) can be
effective. Zehlike et al. (2017) greedily process the list, picking the best
item available (by the ranking’s underlying relevance scores) if it would
not make the protected group under-represented, and selecting the best
protected group item if it is necessary to prevent under-representation.

These approaches, properly implemented, maintain in-group mono-
tonicity (Zehlike et al., 2017): the order between items within a particular
group is preserved in the fairness-enhanced re-ranking, and items are
only reordered with respect to items from other groups. Zehlike et al.
further prove that their greedy approach results in the ranking with
maximal overall utility subject to the binomial fairness constraint and
in-group monotonicity, assuming the accuracy of the system’s underly-
ing utility estimates. Ekstrand and Kluver (2021) show empirically that
greedy approaches need not result in substantial loss on utility-based
evaluation metrics, at least in their experimental setting; Gómez et al.
(2021) provide a similar result for geographic representation in MOOC
course recommendations.

One concern often raised about group representation fairness is
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that majority-group providers of relevant content may be moved aside
in order make room for the items needed to achieve group fairness
goals. Under some theories of equity, such as anti-subordination, this is
expected and acceptable. Garca-Soriano and Bonchi (2021) address this
concern by using randomness to ensure that it is not always the same
items that are bumped aside, but that an individual fairness bound
is preserved while meeting representative group fairness objectives.
Exposure, discussed in the next section, provides another perspective
on relating group and individual fairness.

6.2 Provider Exposure and Utility

As noted at the beginning of this chapter, many provider fairness
constructs are designed to ensure that providers have fair opportunity
to realize the utility that arises from providing content responsive to
users’ information needs. Even representational measures of provider
fairness are often intended as a proxy for access to utility (see e.g.
Ekstrand et al. (2018c) and Sapiezynski et al. (2019)).

A more recent line of fair ranking constructs shifts this discussion
in four important ways:

• Assuming that measures of relevance produced by an information
access system are good proxies for the value of an item to a user,
such that the inclusion of a high-scoring item is worth more to
the provider, as well as to the user.

• Directly measuring exposure (or attention) as a resource that
the system should distribute fairly among providers.

• Relating provider-side utility, abstracted through exposure, to
consumer-side utility.

• Measuring fairness over repeated or stochastic rankings, rather
than a fixed ranking in response to a single information need.

The first of these changes involves an aspect of the WYSIWYG
assumption, namely that users’ preferences, as filtered through the
information access system and output as predicted utility or preference,
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are unbiased indicators of the value of a item. As opposed to the prior
construct of representation, which assumes all list appearances have
utility, the exposure construct considers utility to be a function of the
match between user and item, as the system predicts it. This avoids
one of the drawbacks of a purely representational approach: that the
fairness metric can be satisfied with the inclusion of irrelevant protected
group items, which are unlikely to attract user interest.

The second and fourth of these changes connect with the idea of
browsing models used to evaluate information access systems (sec-
tion 2.5.2), and with common patterns in the presentation of result
lists. Because rankings as actually presented to users are often short, a
single list contains only a small number of opportunities for exposure.
Further, because users are more likely to engage with items at the
top of the ranking than the bottom, these slots are not of equal value:
the first-ranked position (under most browsing models) provides more
exposure to its occupant than the third or seventh position.

Therefore, provider utility is typically measured cumulatively (or
in some cases amortized) over a sequence of recommendation results
delivered to users, or as the expectation over a distribution of rankings
defined by a stochastic ranking policy. In important ways, it is often
difficult — if not impossible — to fairly allocate exposure in a single
ranking. Considering fairness over sequences or distributions allows for
a rich family of fairness constructs that are still achievable, at least
in approximation. Note however that this kind of evaluation is only
appropriate if aggregate utility over time is an appropriate scoring
mechanism. Some fairness contexts, however, might still require that
each generated ranking be fair with respect to protected groups: lists of
job candidates in recruitment context are an example.

6.2.1 Individually-Fair Exposure

As noted in section 3.2.2, the key idea of individual fairness is that
similar individuals — in this case, providers of items — should be
treated similarly (Dwork et al., 2012); in exposure-oriented analyses of
provider impacts of information access, that looks like receiving similar
(opportunity for) exposure. Information access’s focus on utility or



116 Provider Fairness

relevance to an information need provides a relatively natural basis for
assessing similarity with respect to the task: two items are similar if
they have similar relevance to the information need (either assessed
by ground-truth relevance judgments or estimated by the system’s
relevance model). Individual provider-side fairness is often computed at
the item level, ensuring that items are treated fairly without aggregating
to the provider level; in practice there is little difference between these
concepts.

Diaz et al. (2020) operationalize this by taking the expected exposure
over a stochastic ranking policy π. Defining exposure based on a discount
model δ, so that exposure ηpd|πq “ δpπ´1

d q, the expected exposure for
a item is:

EEpd|πq “ Eπ rηpd|πqs “
ÿ

π

ηpd|πqPπpπq (6.2)

This exposure can then be compared to the exposure under a target
policy πtarget; Diaz et al. used a policy that is uniform over all rankings
that respect the relative relevance of documents to the information need
as the target, and provide closed-form solutions for target exposure
under two browsing models. With a target policy, we can compute the
expected exposure loss as squared difference between actual and target
exposure, over all documents:

EELpπq “
ÿ

d

`

EEpd|πq ´ EEpd|πtargetq
˘2 (6.3)

If the policy π distributes exposure comparably to the target policy,
then the difference in exposure under the two different policies will be
low, and thus the overall squared difference will be low. This metric
embodies the “equal exposure” principle: a fair ranking (policy) is one
in which exposure is equally distributed among relevant documents.
Item exposure can be converted to provider exposure by aggregating
over a provider’s items. Squaring just the expected exposure under the
system policy yields expected exposure disparity (EED), a measure of
how equally exposure is distributed among documents regardless of
their relevance, a measure similar to Sapiezynski’s discounted metric.
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Biega et al. (2018) similarly relate exposure to consumer-side utility
by requiring a provider’s exposure to be proportional to their utility,
amortized over a sequence of rankings that may be in response to
different queries:

Apdq “
ÿ

π

δpπ´1
d q

Rpdq “
ÿ

π,ρ

upd|ρq

Equitable attention is satisfied when Apdq{Rpdq “ c for all items d;
Biega et al. quantified violations of this principle through the L1 norm
IneqAttn “

ř

d |Apdq ´ Rpdq|.
One source of complexity in computing these metrics for a whole

system, responding to multiple information requests, is determining
how to aggregate over those requests. Biega et al. (2018) take the sum
over all rankings, regardless of query, and do this sum before comparing
attention to relevance. This results in a measure of the overall attention
a document or provider receives from the system, taking into account
the relative popularity of various information needs, which is useful for
approximating provider utility when the goal is to ensure that providers
obtain fair renumeration (e.g. ad clicks) for their production work.
Because attention and relevance are aggregated separately, however,
a system can be fair by providing the correct exposure to items, but
exposing them on the wrong queries.

Diaz et al. (2020) go the other direction, and compute the metric over
stochastic rankings in response to a single (likely repeated) information
request. This can be averaged over information requests, either with or
without traffic-weighting (weighting a request by its relative frequency
in the system logs). Comparing actual and target exposure on a per-
request basis binds an item’s exposure to the information needs for
which it is relevant, so the system cannot achieve fairness by exposing
content in response to the wrong requests. That feature, however, makes
this measure difficult to apply in a recommendation context where users’
information needs are assumed to be personalization and more or less
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unique.
Neither of these metrics have a naturally-interpretable scale, and

are not suitable for comparing across data sets or experimental settings;
they are only effective for comparing the fairness of multiple systems
on the same sequence or distribution of information requests.

6.2.2 Group-Fair Exposure

These exposure concepts can be extended to group fairness by aggre-
gating exposure over groups. Both Biega et al. (2018) and Diaz et al.
(2020) describe group-based aggregations of their amortized attention
and expected exposure metrics; as presented, these consist of aggregat-
ing attention and relevance (for amortized attention) or exposure (for
expected exposure) by provider group before computing the loss metric:

EEpG|πq “
ÿ

d:pdPG

EEpd|πq

AG “
ÿ

d:pdPG

ÿ

π

δpπ´1
d q

RG “
ÿ

d:pdPG

ÿ

π,ρ

upd|ρq

Unfairness can the be computed with the squared difference in
groupwise exposure between system and target exposure, or absolute
difference between group exposure and relevance.

Singh and Joachims (2018) propose parity constraints and ratio-
based metrics for fair exposure with respect to binary protected groups
under stochastic rankings:

EEpG`|πq “ EEpG´|πq demographic parity (6.4)

EURpπq “
EEpG`|πq{RG`

EEpG´|πq{RG´

exposed utility ratio (6.5)

RURpπq “
Eπ rµpG`|πqs {RG`

Eπ rµpG´|πqs {RG´

realized utility ratio (6.6)

Demographic parity is a straight statistical parity constraint that
ignores relevance and simply requires equal exposure; achieving this is
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equivalent to minimizing groupwise EEDG “
ř

GPG EEpG|πq2. “Exposed
utility ratio” and “realized utility ratio”3 realize a similar logic as equal
exposure or equitable amortized attention: the system is fair if each
group gets the exposure it merits by producing content relevant to
users’ information needs. EUR is a direct ratio-based analogue to these
metrics, while RUR incorporates the actual utility to the user in the
numerator in addition to the overall utility in RG, through the use of
the evaluation metric (a group-wise evaluation metric is the average
of the metric value for documents provided by the group). Singh and
Joachims motivated this as an offline approximation of click-through
rate, so that this metric is closer to the measuring the distribution of
actual user engagement instead of just exposure to users that may lead
to engagement.

These metrics all implement variants on the groupwise analog of the
equal expected exposure principle: a system is provider group-fair if it
distributes exposure to provider groups commensurate with their utility
with respect to the users’ information needs. But as defined so far, they
all have the drawback that they aggregate over groups before computing
whether the exposure is merited for a particular information request or
not. This is similar to the problem with aggregating an item’s exposure
and relevance separately across information requests and comparing
total exposure to total relevance: not only may the system be able to
achieve a good fairness score by exposing items to the wrong information
requests, in group fairness it can be achieved by exposing the wrong
items for a group. So long as a group has some relevant items, and some
items are exposed, there is nothing in the fairness metric (except for
RUR) that requires that the relevant items are the ones exposed. It
can be achieved by randomly selecting items in a group-fair way with
no attention to actual utility. Combining it with a utility metric in
a multi-objective analysis would help, but is a step backwards from
the promise of exposure-based metrics to integrate fairness and utility
directly.

3We use here the names provided by Raj and Ekstrand (2022), as we believe
they better reflect the general use of the terms disparate treatment and disparate
impact than the original names of “disparate treatment ratio” and “disparate impact
ratio” used by Singh and Joachims (2018).
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One way to address this problem is to compute over- or under-
exposure (EEpd|πq ´ EEpd|πtargetq) on a item-by-item basis, and then
take groupwise aggregates of this exposure difference. The resulting
metric will consider a system to be group-fair if no group’s items are
systematically under- or over-exposed more than another group’s; this
method has been adopted by the TREC 2022 Fair Ranking track.

6.2.3 Ensuring Fair Exposure

It is not sufficient to simply measure violations of fair exposure ob-
jectives; we often want to modify the system to provide results with
greater fairness in their exposure. We only outline the approaches here,
referring the reader to the individual papers for details.

As with representational fairness constructs, re-ranking can be a
promising approach. Biega et al. (2018) describe a reranking stratg-
egy based on integer linear programming to ensure individual fairness
of amortized attention. Gómez et al. (2021) re-rank algorithms using
minimal-cost swaps to reduce unfairness in both exposure and represen-
tation. Given a stochastic policy π represented as a doubly-stochastic
matrix, Singh and Joachims (2018) present a linear programming so-
lution to produce stochastic rankings that satisfy their group fairness
constraints.

Diaz et al. (2020) directly use expected exposure loss as a learning-
to-rank objective. Singh and Joachims (2019) similarly adopted a fair
policy learning framework to learn stochastic ranking policies that
fairly allocate exposure. Their approach augments a standard utility
maximization approach, that ensures the most relevant items receive the
most exposure, with a lower-bounding inequality so that, for updiq ą

updjq, EEpdiq

updiq
ď

EEpdjq

updjq
. This ensures that while more relevant items get

more exposure, the disparity in exposure doesn’t outrun the difference
in utility, thus addressing one of the drawbacks to meritocratic fairness
(Joseph et al., 2018) in which fairness can be achieved by giving the
most relevant document all the exposure.

Kamishima et al. (2018) present yet another approach to providing
fair exposure, at least in a binary sense, to providers from different
groups. The provider-side element of their work formulates fair rec-
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ommendation through statistical independence: Ppd P πďk|pd P Gq “

Ppd P πďkq. They then regularize the recommendation model to penalize
violations of this independence objective.

Finally, Burke et al. (2018) provide a more indirect approach that
modifies neighborhood-based recommendation to ensure that neighbor-
hoods are balanced between protected and unprotected groups, so that
protected-group items have a good chance at being recommended.

Most techniques for provider fairness, including those described
so far, focus on providing fair exposure in response to an established
information need match: available query and document text for a search
application or the normal steady-state case for recommendation. Zhu
et al. (2021) examine provider fairnesss in cold-start recommendation
(recommending new items that do not yet have sufficient user interac-
tions for typical collaborative filtering approaches to recommend them),
and adjust the cold-start process to maximize the minimal exposure
(expressed by discounted cumultative gain) of each new item to ensure
that the system is fair to new items from different providers or provider
groups.

6.3 Fair Accuracy and Pairwise Fairness

Another way of conceptualizing provider fairness, that has very similar
motivations to fair exposure but results in very different metrics, is to
look at pairwise accuracy as a basis for fairness. As noted in Section 2.6.4,
pairwise rank loss has long been used as a learning-to-rank objective
for recommender systems (Rendle et al., 2009).

Beutel et al. (2019) and Narasimhan et al. (2020) define fairness
metrics based on pairwise accuracy. The key principle of these metrics is
that a system is fair if it is not systematically more effective at correctly
ordering relevant items from one group than it is from another — that
is, the probability that d` will be ranked above d´ is conditionally
independent of provider group given that d` has higher utility than d´:

Ppd` ąπ d´|upd`q ą upd´q; pd`
P Gq “ Ppd` ąπ d´|upd`q ą upd´qq

In the case of a binary protected group, this can be further refined
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into intra-group and inter-group pairwise accuracy (Beutel et al., 2019).
Intra-group requires that the protected and unprotected groups have
the same pairwise accuracy for ordering items within the group (or,
equivalently, each group has the same ROC AUC):

Ppd` ąπ d´|upd`q ą upd´q; pd`
, pd´

P G`q

“ Ppd` ąπ d´|upd`q ą upd´q; pd`
, pd´

P G`q

Satisfying this constraint ensures that the system is not more accu-
rate at modeling relative preference for items created by one group than
another; for age discrimination in job candidate search, for example, it
would ensure that the system is not systematically more accurate at
estimating the relative qualification of older candidates than younger
ones.

Inter-group fairness requires that the groups have the same pairwise
accuracy when compared with an item of the other group:

Ppd` ąπ d´|upd`q ą upd´q; pd`
P G`, pd´

P G´q

“ Ppd` ąπ d´|upd`q ą upd´q; pd`
P G`, pd´

P G´q

Beutel et al. (2019) further extended these to leverage two-stage
relevance feedback (e.g. clicking on an item, followed by a post-click
signal of utility such as rating) to avoid simply optimizing to amplify
click probabilities (a common signal for pairwise rank loss), and showed
that group pairwise accuracy can be used as a regularization for a
pairwise learning-to-rank algorithm like BPR (Rendle et al., 2009) to
penalize group disparities in ranking accuracy.

Pairwise accuracy can be estimated by sampling and only requires
group and utility data for the sampled items, as opposed to the exposure-
based metrics which — in their original form — require data across the
complete ranking. This may make them more sample-efficient and/or
easier to apply in partial data scenarios, but this potential benefit has
not yet been well-explored.

Cui et al. (2021) present a similar mechanism, re-ranking result lists
to preserve within-group ordering and optimize AUC while balancing
fairness and accuracy loss.
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6.4 Related Problem: Subject Fairness

As we noted in section 4.3.3, subject fairness — treating the subjects
of items, such as the subjects of news articles or the population in
a medical study — has much in common with provider fairness, at
least in terms of its structure. Since subjects and providers are both
entities associated with items, many of the same metrics and fairness
mechanisms can be employed; the only change needed is the item
attribute considered. Subject fairness is also closely related to diversity,
even more so than provider fairness, as it aims to ensure that the results
contain representation from a wide array of possible subjects.

However, depending on the information access context, subject
fairness may require revisiting a key assumption behind many of the
metrics discussed above, namely the assumption of cumulative utility.
It may not be sufficient for subject fairness to allow fair results at
time t` 1 to compensate for unfair results at time t. For example, if
we are concerned that image search results for “CEO” gives an unfair
representation of the percentage of women in that position, we might
not find it acceptable to mix 100% male result lists with the occasional
over-representative female list. These lists go to different users and
therefore do not avoid the representational harm we are seeking to
avoid. In such a case, minimum (or at least distributional) properties
of list-wise metrics will be of interest rather than (or in addition to)
averages over many results.

Subject fairness introduces the challenge, also, of identifying the
subjects. While items are often annotated with their creators, they are
not always annotated with the relevant aspects of their subjects, at
least in a machine-readable manner. More advanced content analysis
techniques or extensive human annotation may be necessary to obtain
the labels needed to pursue subject fairness, particularly for ensuring
fairness to subject groups.

One sub-area of search that has seen significant work on subject
fairness is in image search: Kay et al. (2015) and Metaxa et al. (2021)
provide measurements and empirical techniques of gender and race
biases by comparing representation in image search with estimated
representation from the US Bureau of Labor Statistics; Singh et al.
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(2020) provide another treatment. Otterbacher et al. (2017) build on
this with evaluation and design recommendations for improving such
systems and their human effects. Karako and Manggala (2018) provide a
techniqe based on maximum marginal relevance (MMR), a diversification
technique, for improving the diversity of a set of image results; Celis and
Keswani (2020) apply MMR and propose a new technique that does away
with MMR’s need to compare results with each other (improving the
ranking effiency). Further, Celis and Keswani use textual descriptions
from off-the-shelf image summarization algorithms to improve diversity
and subject fairness without needing explicit image labels.

Outside of image search, subject fairness is not extensively studied
in the fair recsys and IR literature. Rekabsaz et al. (2021) provide one
example, approaching subject fairness in retrieved text passages by
measuring whether each retrieved document is neutral or unbalanced
in its presentation of sensitive groups, and prioritizing the retrieval
of neutral documents (ones that either do not include sensitive group
information or are balanced in their representation of it, as determined
by the relative frequency of group-related keywords).

Subject fairness is also implicated in many examples of search-
related harms, such as the representational harms towards Black girls
documented by Noble (2018), but it has not yet received as much
research attention — that we are aware of — in the research literature.



7
Dynamic Fairness

In chapters 5 and 6, we have considered fairness for consumers and
providers (and subjects) at a single point in time: the current state of
the system and its models should fare. While stochastic policies act
over time, the treatment in section 6.2 does not consider updates to the
policy or changes to items or users.

Information access systems, however, operate in an iterated, chang-
ing environment. They continuously make new decisions, gain fresh
users, and lose established users. This dynamism is particularly salient
in an application with high item churn such as news recommendation,
where articles may be superseded by fresher stories in quick succession
(Karimi et al., 2018). But even when items have longer lifetimes, as
in music, items and providers will come and go from the system over
time. In addition, seasonal changes and longer-term trends means that
historical profiles of users may lose utility over time. For example, a
user who searches for an entry level job at one point in time may be
looking for a different kind of position in the future.

These dynamics are central to lines of research in recommender
systems that consider the temporal aspects of markets and of user
behavior (Jambor et al., 2012; Harman et al., 2014; Campos et al.,
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2014; Basilico and Raimond, 2017; Zhang et al., 2020). Note that
this area of research is distinct from work that treats the problem of
recommendation as one that involves temporally-extended and dynamic
learning behavior, as in multi-armed bandit or reinforcement learning
formulations. In these settings, the recommender system changes its
policy over time in a process of exploring user preferences and item
qualities, but for the most part, the items and users are considered a
static aspect of the environment over which learning takes place.

Understanding the dynamics of information access systems in general
is a relatively recent project (although there are historical examples, such
as that of Fleder and Hosanagar (2009)), and ML fairness research is
also only beginning to scratch the surface of dynamic fairness (D’Amour
et al., 2020). The need to study information access fairness over time is
clear, but there is so far relatively little work on it. In this chapter we
provide pointers that researchers wishing to explore this vital topic.

7.1 Feedback Loops

The dynamics of recommendation contexts have also been considered in
the context of recommender system fairness. One of the most troubling
aspects of algorithmic bias generally is the potential for destructive pos-
itive feedback loops within the system (O’Neil, 2017). Credit redlining
provides an example. If a particular geographic area is determined to
be too risky for lending, not only are current applicants impacted, but
future ones as well. The system will not gather counterexamples that
would help it identify the borrowers within the region that are actually
good risks.

Hashimoto et al. (2018) study feedback loops in production systems
from a fairness perspective. The authors model a population of users
iteratively engaging with a system that trains using behavioral data.
The model and supporting experiments in the context of predictive
typing demonstrate that, over time, machine learning algorithms pay
more attention to dominant subgroups of users as they lose under-
represented subgroups of users. The authors propose applying techniques
from distributionally robust optimization to achieve more balanced
performance, resulting in broad user retention. Zhang et al. (2019)
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extend this work by analyzing the dynamics of fairness in sequential
decision-making. Finally, in the context of predictive policing, Ensign
et al. (2018) theoretically demonstrate how to filter feedback to improve
the fairness of decision-making systems learning from feedback loops.

A well-known effect in information access systems is that of various
presentation-related biases (Joachims et al., 2017; Yue et al., 2010).
User are more likely to experience and rate items that the system itself
suggests, and their interaction may be affected by where and how it
presents those results. This is by design: the system is presenting items
that it regards as ones users will want to interact with. However, this
bias can cause a form of positive feedback, in which presented items
gain in popularity, leading to greater bias towards presenting them, at
the expense of other items (Chaney et al., 2018; Fleder and Hosanagar,
2009). Positive feedback loops are inherently antithetical to fairness:
they magnify small initial differences between item rating frequency into
large ones as time goes on. It is also very difficult for new entrants to
break into a market with positive feedback effects since they would have
to gain traction against well-entrenched competition. Recommender
systems therefore tend naturally towards unfairness, a tendency that a
fairness-aware recommender system will need to continuously counter.

Feedback loops in recommender systems have been studied in a num-
ber of recent works. Chaney et al. (2018) examined the homogenization
of recommendations in iterative environments. They find that recom-
mendation systems, especially those based on machine learning, increase
the consistency in recommendations across different users but also tend
to increase the inequity of exposure across items. This phenomenon
was termed “bias amplification” in work by Mansoury et al. (2020).
Similar effects were found an information retrieval context in (Sun
et al., 2018). Multi-agent simulation techniques were used to provide
a theoretical basis for such findings in (Jiang et al., 2019). Some work
in online learning contexts looks to rectify these biases and prevent
bias amplification through the feedback loop; for example, Morik et al.
(2020) use separate fairness and utility estimators to improve group
fairness in dynamic learning-to-rank settings.
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7.2 Dynamic Evaluation

In its most basic form, accounting for recommender system dynamics
means moving away from a recommendation experimentation model
that has the form of batch training followed by batch testing. Instead we
need to incorporate the cycle of user arrival, recommendation generation,
user response, and periodic system re-training. Off-line evaluation takes
on the character of simulation of a recommender’s evolution over time.

This type of evaluation has become standard in recommendation
approaches that make use of reinforcement learning, in which the whole
point is to develop algorithms that are compatible with a dynamic
environment. Li et al. (2010) and Zheng et al. (2018) provide for more
details about this algorithmic approach. By necessity, such training
requires the application of off-policy evaluation because ground-truth
user responses will only be available for a small subset of the recommen-
dations that could generated and yet we need to model these responses
as training input.

In practical deployments where fairness is a concern, the appropriate
form of evaluation might be to consider the system’s fairness properties
over some particular time interval and the evolution of its fairness
through multiple evaluation cycles. However, we note that methodologies
in this area are still emerging.

7.3 Opportunities in Feedback Loops

Feedback can also be harnessed to adjust system performance towards
greater fairness. Sonboli et al. (2020a) present an adaptive recommen-
dation approach to multidimensional fairness using probabilistic social
choice to control subgroup fairness over time. In this model, devia-
tions from fairness observed in a particular time window are addressed
by adjusting the system’s fairness objectives over the next batch of
recommendations produced.

Biega et al. (2018) also account for time in their reranking strategy;
while their algorithm does not directly use relevance feedback, it consid-
ers past rankings so that the ranking at time t improves the aggregate
fairness the system achieved up to time t.



8
Next Steps for Fair Information Access

Fair information access is a relatively new but rapidly growing corner of
the research literature on information retrieval, recommender systems,
and related topics. The work in this space draws from concerns that
have long been of interest to information access researchers, such as
those motivating long-tail recommendation, the study of popularity bias,
and examining system performance across a range of query types and
difficulties, but connects it to the emerging field of algorithmic fairness
and its roots in the broader literature on fairness and discrimination in
general.

But while general literature on algorithmic fairness and fair machine
learning is a crucial starting point, information access systems present
particular problems and possibilities that make the straightforward
application of existing concepts insufficient, as we have shown in sec-
tion 4.1. In particular, the multisided nature and ranked outputs of
many information access systems complicate the problem of assessing
their fairness, as we must identify which stakeholders we are concerned
with treating fairly and develop a definition of fairness that applies to
repeated, ranked outputs, among other challenges. The work of fair
information access often requires data that is not commonly included
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with recommender systems or information retrieval data sets, particu-
larly when seeking to ensure results are fair with respect to sensitive
characteristics users or creators, such as their gender or ethnicity. This
work must also be done with great care and compassion to ensure that
users and creators are treated with respect and dignity and to avoid
various traps that result in overbroad or ungeneralizable claims.

We argue that there is nothing particularly new about these re-
quirements, but that thinking about the fairness of information access
brings to the surface issues that should be considered in all research
and development.

8.1 Directions for Future Research

There are many open problems that need attention in fair information
access. Some of the ones we see include:

• Extending the concepts and methods of fair information access
research to additional domains, applications, problem framings,
and axes of fairness concerns. Due to the specific and distinct
ways in which social biases and discrimination manifest (Selbst
et al., 2019), we cannot assume that findings on one bias translate
to another (e.g. findings on race may not apply to ethnicity
or geographic location), or that findings on a particular bias
in one application will translate (e.g. ethnic bias may manifest
differently in recommendation vs. NLP classification tasks). Over
time, generalizable principles may be discovered and give rise
to theories that enable the prediction of particular biases and
their manifestations, but at the present time we need to study a
wide range of biases and applications to build the knowledge from
which such principles may be derived.

• Deeper study of the development and evolution of biases over time.
Most work — with the exception of fair policy learning and a
handful of other studies — focuses on one-shot batch evaluation
of information access systems and their fairness. However, system
behavior is dynamic over time as the system processes information
requests, produces results, users respond to them, and the system
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learns from their feedback. This dynamicism means that an ini-
tially fair system may become unfair over time if users respond
to it in a biased or discriminatory fashion, or that it may move
towards a more fair state if users respond well to recommendations
that increase overall fairness. Tools such as T-RECS Lucherini
et al. (2021) may be valuable for such research.

• Define and study further fairness concerns beyond consumer and
provider fairness. We have identified subject fairness as one addi-
tional type of concern here, but we doubt it is the only additional
stakeholder whose equity concerns should be considered.

• Study human desires for and response to fairness interventions in
information access. The first works are beginning to surface in this
direction (Smith et al., 2020), Harambam et al. (2019) explored
users’ desired features and capabilities for recommendation with
concerns that touch on fairness, and Ferraro et al. (2021) studed
provider perceptions, but at present little is known about what
users or content providers expect from a system with respect
to its fairness, or how users will respond to fairness-enhancing
interventions in information access systems.

• Develop appropriate metrics for information access fairness, along
with thorough understanding of the requirements and behavior of
fairness metrics and best practices for applying them in practical
situations. For example, we believe expected exposure (Diaz et
al., 2020) and pairwise fairness (Beutel et al., 2019) are useful
frameworks for reasoning about many provider fairness concerns,
but there is a much work left to do to understand how best to
apply and interpret them in offline and online studies.

• Develop standards and best practices for information access data
and model provenance. Gebru et al. (2018) presented the idea
of datasheets for data sets, arguing that data sets should be
thoroughly and carefully documented so downstream users can
properly assess their applicability, limitations, and the appropri-
ateness of a proposed use. Information retrieval has a long history
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of careful attention to evaluation data through TREC, CLEF,
and similar initiatives (Voorhees, 2001), but until recently the
evaluations in question have typically focused on overall effective-
ness with some explorations of related issues such as diversity.
Recommender systems has a substantial library of data sets, but
has seen less attention to their careful documentation; Harper and
Konstan (2015) provide a notable exception in their documenta-
tion of the MovieLens data set, addressing in advance several of
the questions proposed by Gebru et al.

Mitchell et al. (2019) built on this idea for reporting important
properties of trained models, and Yang et al. (2018) present a
“nutrition label” for (non-personalized) rankings describing their
data sources, ranking principles, and other information. These
concepts need to be extended to information access, and to the
complex integrated data sets that drive many search and recom-
mendation applications. New research continues to discover that
long-standing data management decisions, such as pruning (Beel
and Brunel, 2019), may have deep implications for experiment
and recommendation outcomes, emphasizing the need for careful
study of the properties of recommendation data, models, and
outputs that should be documented.

• Engage more deeply with the multidimensional and complex nature
of bias. Most of the existing literature on fair information access —
and indeed all of algorithmic fairness — focuses on single attributes
in isolation, often restricting them to binary values. However, the
intersection of group memberships often gives rise to particular
forms of discrimination and social bias that cannot be explained by
any one of the groups alone (Crenshaw, 1989). Some recent work
begins to engage with multiple simultaneous axes of discrimination
or fairness (Yang et al., 2020), but as with many mathematical
formulations of social concepts, multidimensionality does not fully
capture the dynamics invoked by the concept of intersectionality
(Hoffmann, 2019). Further, many social categories are complex,
unstable, and socially constructed, and algorithmic fairness is
only just beginning to reckon with these complexities of human
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social experience. Hanna et al. (2020) present a treatment of some
of these issues in the context of algorithmic fairness, but much
work remains to respond to that call and make fairness — both
generally for machine learning and specifically for information
access — responsive to these realities.

• Participatory design and research in information access. Partici-
patory design (Schuler and Namioka, 1993) has a long history in
human-computer interaction and user-centered design, but it is dif-
ficult to find examples of it applied to the design, evaluation, and
study of modern, large-scale information access systems. Belkin
and Robertson (1976) observe that “it is necessary to establish
and maintain an effective social relationship between [information]
science and those whom it affects, so that the latter have a means
of judging the implications of the former’s activities”; this is true
in general, but particularly for the concerns of this monograph.
The field is accumulating many techniques for measuring and
providing different kinds of fairness, but a serious understanding
about what affected people actually want is currently wanting.
One notable exception is the work of Harambam et al. (2019),
who studied what Dutch news consumers want in terms of the
control their news recommendation service provides. Smith et al.
(2020) and Sonboli et al. (2021) studied users’ opinions of fairness
in recommendation, but but similar studies of producers, subjects,
and other affected stakeholders are needed.

There is a lot of open space for research in fair information access,
and this work has the potential for significant improvements to the hu-
man and societal impact of algorithmic systems for locating, retrieving,
filtering, and ranking information.

8.2 Recommendations for Studying Fairness

Finally, we wish to leave our readers with some suggestions for how to
approach research, study, and practice in fair information access, based
on the work and concepts we have synthesized in this monograph.
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Define the goal. Effective work on fair information access begins
with a clear social goal: what specific fairness-related harms are to be
avoided? What is the legal, ethical, or other basis for understanding
and defining those harms? We hope our map of the space in chapter 4
helps in that definitional work. This is crucial for many reasons, but one
is to avoid abstraction traps (Selbst et al., 2019) by keeping the work
grounded in specific applications and risks; effective and appropriate
generalization, in our opinion, flows from clear, contextualized findings.

Clearly operationalize the goal. With a specific harm in mind, select
a metric that plausibly captures the kind of harm to be avoided. Project
writeups, whether as formal research papers or internal reports, need
to clearly and specifically describe how (un)fairness and its resulting
harms are being measured, and justify why it is an appropriate means
of measuring the target concept. The work we have cited in chapters 5
and 6 provides examples of doing this for various fairness objectives.
Jacobs and Wallach (2021) provde a more thorough treatment of the
complexities of measuring subjective, contestible constructs like fairness.

Use appropriate data. Data is one of the major challenges for fairness
research, in part because group fairness work often requires sensitive
data that is often not collected with normal information retrieval or
recommender systems data sets. Some data sets provide group anno-
tations, such as the data from the TREC Fair Ranking tracks (Biega
et al., 2020) and certain older MovieLens data sets (Harper and Kon-
stan, 2015). For some content creators, library data can be a source of
author demographic information (Ekstrand and Kluver, 2021). As noted
in section 1.8.2, we advise against statistical inference techniques for
annotating individual people; there has been work, however, on using
background distributions to estimate metrics (Kallus et al., 2020).

Carefully report limitations. Any research study has limitations, and
fairness studies are no exception. It is crucial to carefully and thought-
fully report the limitations of the data, metrics, and methods in order to
help readers appropriately interpret and generalize the results. Bracing
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honesty in discussing what any particular work can and cannot do is
key to making true progress in this space.

8.3 Concluding Remarks

As we said at the outset (section 1.6), it is our hope that this monograph
provides readers with an information access background who wish to
learn about algorithmic fairness, and people grounded in algorithmic
fairness and curious about what is happening on fairness in information
retrieval, with a good starting point to understand the complexities,
pitfalls, and possibilities in the rich and high-impact problem space of
fair information access. This field is still young; far too young to provide
a comprehensive, retrospective treatment of its key ideas and findings.

What we have sought to do instead is to collect the work so far and
integrate it into a prospective map of the space. Much of this map is
still incomplete, and the next years of research will fill in many details
and likely unlock entirely new dimensions to consider. We look forward
to seeing the field grow and reading the many papers to come, and
remember, please cite who we cite, not just us.
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A
Resources for Fair Information Access

In this appendix, we collect pointers to several resources for studying
and working on fair information access. We have made every effort to
ensure these links are current as of the time of publication, but they may
degrade more quickly than the references in the rest of the publication.

A.1 Data Sets

• The TREC Fair Ranking track (launched in 2019) provides data
sets for provider fairness in search rankings, both in academic
search (2019–2020) and Wikipedia article search (2021). The data
is available in TREC (https://trec.nist.gov/results.html), with
the track web site at https://fair-trec.github.io.

• The PIReT Book Data Tools at https://bookdata.piret.info pro-
vide tools to integrate book recommendation data sets (including
from BookCrossing, Amazon, and GoodReads) with publicly-
available book and author metadata to study provider fairness in
book recommendation, as used by Ekstrand and Kluver (2021).

• Ghosh et al. (2021) develop a number of data sets for fair ranking,
using various methods and studying the errors of demographic
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inference for data augmentation.

A.2 Software

There are not yet widely-distributed open-source software for fair rec-
ommendation and retrieval; the available code is mostly embedded in
published experiment scripts, or general-purpose systems repurposed
for fair information access.

• Terrier (http://terrierteam.dcs.gla.ac.uk/research.html) provides
xQuAD, a diversification technique that has been successfully
applied for fair search ranking (Mcdonald and Ounis, 2020).

• Experimental scripts are available for the fair recommendation
studies of Ekstrand and Kluver (2021) (https://md.ekstrandom.
net/pubs/bag-extended) and Ekstrand et al. (2018b) (https://md.
ekstrandom.net/pubs/cool-kids).

• librec-auto (https://librec-auto.readthedocs.io/en/latest/) pro-
vides automated support for running recommender systems ex-
periments, including fairness metrics.

http://terrierteam.dcs.gla.ac.uk/research.html
https://md.ekstrandom.net/pubs/bag-extended
https://md.ekstrandom.net/pubs/bag-extended
https://md.ekstrandom.net/pubs/cool-kids
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